
WOODHEAD PUBLISHING SERIES IN BIOMATERIALS

NANOTECHNOLOGY IN CONSERVATIVE DENTISTRY

Nanotechnology in Conservative Dentistry

Woodhead Publishing Series in Biomaterials

Nanotechnology in Conservative Dentistry

Edited by

MONA ISMAIL RIAD

SHEREEN HAFEZ IBRAHIM

Woodhead Publishing is an imprint of Elsevier
The Officers' Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-323-90282-3 (print)
ISBN: 978-0-323-90667-8 (online)

For information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Sabrina Webber Editorial Project Manager: Isabella C. Silva Production Project Manager: Vijayaraj Purushothaman

Cover Designer: Victoria Pearson

Typeset by MPS Limited, Chennai, India

Dedication

To my parents for their encouragement and support

To my family for their overwhelming love and understanding

To the soul of my dear professors Prof. Dr. Mai Yosry and

Prof. Dr. Amr Shabka Professors of Conservative Dentistry,

Cairo University, Egypt

-Shereen Hafez Ibrahim

Contents

List	of con	tributors	Xii
Auti	hor co	ntributions	XV
Pref	ace		XVİ
Вас	kgrour	nd and purpose	χix
Ack	nowled	dgment	XX
1.	Ove	rview of emerging nanotechnology strategies in dentistry	1
	Aya	Abdel Fattah and Randa Abdel Rahman	
	1.1	Nanotechnology and nanoscience	1
	1.2	Nanometer	1
	1.3	Champions of nanotechnology	2
	1.4	Nanoparticles are available in different shapes	3
	1.5	Origin of nanoparticles	4
	1.6	Different techniques and classifications for nanoparticle synthesis	5
	1.7	The most popular nanoparticles	5
	1.8	Properties	6
	1.9	Applications	7
	1.10	Dental applications	8
		1.10.1 Detection and treatment of oral cancer	8
		1.10.2 Chitosan nanoparticles	Ş
	1.11	Tissue engineering	11
	Refe	rences	26
	Furth	ner reading	27
2	Nan	notes building in targeting and detection of microscavities	29
2.		notechnology in targeting and detection of microcavities	25
	Sara	Mady and Noura Alzayyat	
	2.1	Introduction	29
		2.1.1 Diagnosis	29
		2.1.2 Caries prevalence	29
		2.1.3 Caries definition	29
		2.1.4 What are microcavities?	30
	2.2	Gold standard	30
		2.2.1 ICDAS II (International Caries Detection and Assessment System)	30
	2.3	Recent diagnostic tools	30

		2.3.1	Essentials to allow conservation	30
	Furt	her rea	ding	46
3.	Nar	notech	nnology strategies in caries therapy and management	49
	3.1	Carie	s prevention and management	49
		Mona	Mahmoud Essa, Doaa Gamal Ashour and Sherifa Ahmed	
		3.1.1	Caries prevention	49
			3.1.1.1 Current oral biofilm treatment options	50
			3.1.1.2 Current agents for controlling oral biofilms	51
			3.1.1.3 Nanoparticle-based oral biofilm treatments	51
		3.1.2	Caries management	55
			3.1.2.1 The problem	55
			3.1.2.2 Role of fillers in dental adhesives	56
		3.1.3	Modifications in glass ionomer	61
			3.1.3.1 Modifications in glass ionomer cement	61
		3.1.4	Nanoparticles in resin composites	62
		3.1.5	Nanoparticles in ceramics	66
			3.1.5.1 Nanozirconia ceramics	66
		3.1.6	Nanoparticles in hybrid materials	67
			3.1.6.1 Conclusion	68
	Furth	ner read	ling	68
	3.2	Carie	s therapy	70
		Mona	Mahmoud Essa, Doaa Gamal Ashour and Sherifa Ahmed	
		3.2.1	Caries therapy	70
		3.2.2	Remineralization stategies	74
	Refe	rences		80
4.			nnology in non-cavitated lesions and tooth	
	hyp	oersen	sitivity	83
	Doa	ia Gam	al Ashour, Sherifa Ahmed and Mona Mahmoud Essa	
	4.1	Introd	uction	83
	4.2	Nano	technology	84
		4.2.1	Requirements of an ideal remineralization material	84
		4.2.2	Remineralization on a nanoscale	85
	4.3	Nano	technology in management of tooth sensitivity	96
		4.3.1	What are some solutions to this problem?	96
	Refe	erences		101
	Furt	her rea	dina	102

5.	Naı	notech	nology in resin composite restorative material	105
	She	rif Khad	r and Omar Nader	
	5.1	Introdu	uction	105
	5.2	Challer	nges facing dental composites: Zhou et al. (2019)	106
	5.3	Strateg	gies to overcome composite challenges	106
	5.4	Nanote	echnology in adhesives	115
		5.4.1	Nanotechnology modifications to adhesives	115
		5.4.2	QADM	116
		5.4.3	MDPB	116
		5.4.4	Silver nanoparticles	116
		5.4.5	Nanoamorphous calcium phosphate	116
		5.4.6	PolymP-n active nanoparticles	117
		5.4.7	NanoClay (montmorillonite [Na-MMT])	117
		5.4.8	Hydroxyapatite nanorods	117
		5.4.9	Zirconia nanoparticles	118
		5.4.10	Nanogels	118
	5.5	Nanote	echnology in glass ionomer	118
	5.6	Nanote	echnological modifications to glass ionomer powder	119
		5.6.1	Nanogranular glass	119
		5.6.2	Nanotitanium oxide	119
		5.6.3	Nanohydroxyapatite—nanofluoroapatite	119
		5.6.4	Surface-modified nanoparticles of zirconia and silica	120
		5.6.5	Nanoresin-modified glass ionomer	120
		5.6.6	Chlorhexidine hexametaphoshate nanoparticles	120
		5.6.7	Quaternary ammonium polyethylenimine (QA - PEI)	120
		5.6.8	Silver nanoparticle	121
		5.6.9	Nanoencapsulated healing agent	121
		5.6.10	Nanoresin surface coats	121
	Refe	erences		122
	Furt	her reac	ding	122
6.	Ena	mel sv	ynthesis	125
			al Ashour, Sherifa Kandil and Mona Mahmoud Essa	
	6.1	Introdu	uction	125
		6.1.1	Amelogenesis	125
	6.2	Amelo	genin	126
		6.2.1	The classical theory of crystallization	128
		6.2.2	The nonclassical pathway of crystallization	128
	6.3	Approa	aches for enamel synthesis	128

(ontents

	6.3.1 Physical synthesis approach	129
	6.3.2 Biochemical enamel engineering	130
6.4	Cell-based approaches for enamel synthesis	133
	6.4.1 So why is it difficult to generate enamel?	133
Ref	ferences	137
7. Bio	omimetic strategies for dentin reconstruction and pulp	
	otection	139
Sai	ra Mady, Noura Alzayyat and Rania Rashad	
7.	.1 Introduction	139
	7.1.1 Dentin structure and dental caries	139
7.	.2 Introduction to biomimetics	139
7.	.3 Objectives of biomimetics	140
7.	.4 Biomimetic principles in restorative dentistry	140
7.	.5 Dentin reconstruction	140
7.	.6 Concept of dentin biomimetic reconstruction	141
7.	.7 Analogs "synthetic noncollagenous proteins"	141
7.	.8 Importance of dentin phospholylation	142
7.	.9 Dental caries effect on dentin	142
7.1	O Classical ion-based crystallization or top-down approach	143
7.1	1 Nonclasssical crystallization or bottom-up approach	144
7.1	2 Biomimetic dentin remineralization remains a proof of concept	t 144
7.1	3 Clinical application	144
7.1	4 Biomimitic materials	145
7.1	5 Conclusion and remarks	153
Ref	ferences	154
B. Na	anotechnology in tooth-tissue regenerative therapy	157
Ay	a Abdel Fattah, Randa Abdel Rahman and Rania Rashad	
8.1	Trials on cementum regeneration	171
8.2	Pulp regeneration	173
8.3	Bone marrow	176
8.4	Umbilical cord stem cells	176
8.5	Composition of adipose tissue	177
8.6	Growth factors released by platelets	182
Ret	ferences	184
Fui	rther reading	184

matei	rials	and operat	ive techniques	187
9.1 N	lano	naterials bio	compatibility and hazards	187
Dina	Kam	al, Nancy He	lmy and Yomna Sayed	
9.	.1.1	Hazards		188
		9.1.1.1 Iron	oxide nanoparticles	194
		9.1.1.2 Biolo	gical consequences of nanorobots	194
		9.1.1.3 Sumi	mary	19.
		9.1.1.4 Conc	lusion	19.
9.	.1.2	Biocompatib	ility	196
		9.1.2.1 Defin	ition	19
		9.1.2.2 WHC) guidelines	190
		9.1.2.3 Reco	mmendations to reduce toxicity from nanoparticles	200
		9.1.2.4 Sumi	mary and conclusion	20
Refer	ence	:		20
Furth	er re	ading		20
a Si Yi D	syst here omn oaa	ematic revie en Hafez, Mo a Khalaf, Dina Gamal Ashou	y of nanoparticles in conservative dentistry: w na Ismail Riad, Amir Hafez, Mona Mahmoud Essa, a Kamal, Sherifa Kandil, Nancy Blamon, ır, Sherif Khadr, Omar Nader, Aya Mohamed, ıra Mady, Noura Alzayyat and Rania Rashad	20
9.	.2.1	Introduction		20
9.	.2.2	Materials and	d methods	
		0221 Data		20
			sources and search	20
		9.2.2.2 Inclu	sion and exclusion criteria	20 20
		9.2.2.2 Inclui 9.2.2.3 Study		20 20
-		9.2.2.2 Inclui 9.2.2.3 Study Results	sion and exclusion criteria	20 20 20 20
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion	sion and exclusion criteria videntification and selection	20 20 20 20 20
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion	sion and exclusion criteria	20 20 20 20 20
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold	sion and exclusion criteria	20 20 20 20 20 20
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold 9.2.4.3 Nar	sion and exclusion criteria	20 20 20 20 20 20 20
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold 9.2.4.3 Nar 9.2.4.4 Nar	sion and exclusion criteria videntification and selection al and metal oxide nanoparticles d and copper nanoparticles nohydroxyapatite notubes	200 200 200 200 200 200 200 210 211
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold 9.2.4.3 Nar 9.2.4.4 Nar 9.2.4.5 Silic	sion and exclusion criteria videntification and selection al and metal oxide nanoparticles d and copper nanoparticles nohydroxyapatite notubes a	20 20 20 20 20 20 20 21 21
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold 9.2.4.3 Nar 9.2.4.4 Nar 9.2.4.5 Silic 9.2.4.6 Nar	sion and exclusion criteria videntification and selection al and metal oxide nanoparticles di and copper nanoparticles nohydroxyapatite notubes a no ingredients in resin composite	200- 200- 200- 200- 200- 200- 210- 211- 211
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold 9.2.4.3 Nar 9.2.4.4 Nar 9.2.4.5 Silic 9.2.4.6 Nar 9.2.4.7 Den	sion and exclusion criteria videntification and selection al and metal oxide nanoparticles d and copper nanoparticles nohydroxyapatite notubes a no ingredients in resin composite ntal composite dust	203 204 205 205 205 207 212 213 214 214
-		9.2.2.2 Inclui 9.2.2.3 Study Results Discussion 9.2.4.1 Met 9.2.4.2 Gold 9.2.4.3 Nar 9.2.4.4 Nar 9.2.4.5 Silic 9.2.4.6 Nar 9.2.4.7 Den	sion and exclusion criteria videntification and selection al and metal oxide nanoparticles d and copper nanoparticles nohydroxyapatite notubes a no ingredients in resin composite etal composite dust eral trioxide aggregate	200 200 200 200 200 200 210 210 210 210

		9.2.4.10	Chitosan	217
		9.2.4.11	Zirconia	217
		9.2.4.12	Graphene-based nanomaterials	217
		9.2.4.13	Ceramic	218
		9.2.4.14	Bioactive glass	218
		9.2.4.15	Janus nanoparticles	218
	9.2.5	Conclus	sion	218
	9.2.6	Recomr	mendations	219
	Disclosu	re of state	ement	219
	Availabil	ity of data	a and materials	219
	Compet	ing interes	sts	219
	Funding			219
	Authors'	contribut	ions	230
	Reference	ces		230
	Further	reading		238
10.	Non-inv	asive de	ntistry reality or dream	239
	Dina Kam	nal, Nancy	Helmy and Yomna Sayed	
	10.1 Dia	gnostic no	oninvasive nanodentistry	240
	10.	1.1 Oral	fluid nanosensor test	243
	10.2 Pre	ventive no	oninvasive nanodentistry	243
	10.	2.1 Sumr	mary and conclusion	247
	10.3 The	erapeutic r	noninvasive nanodentistry (nanotherapeutics)	247
	10.4 Nar	norobots:	the dream	250
	10.5 Cor	nclusion		250
	Further re	ading		251
Inde	X			253

List of contributors

Sherifa Ahmed

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Noura Alzayyat

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Doaa Gamal Ashour

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Nancy Blamon

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Randa Elnaggar

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Mona Mahmoud Essa

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Aya Abdel Fattah

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Amir Hafez

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Shereen Hafez

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Nancy Helmy

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Dina Kamal

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Sherifa Kandil

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Sherif Khadr

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Yomna Khalaf

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Sara Mady

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Aya Mohamed

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Omar Nader

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Randa Abdel Rahman

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Rania Rashad

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Mona Ismail Riad

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Yomna Sayed

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Author contributions

Shereen Hafez Ibrahim, Mona Ismail Riad, Amir Hafez, Mona Mahmoud Essa, Yomna Khalaf, Dina Kamal, Sherifa Kandil, Nancy Blamon, Doaa Gamal Ashour, Sherif Khadr, Omar Nader, Aya Mohamed, Randa Elnaggar, Sara Mady, Noura Alzayyat, Rania Rashad, Dina M. El Kadi, Elaziz RH, Dina Ezz

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Shereen Hafez Ibrahim (associate professor of conservative dentistry): Corresponding author, project administration, supervision, conceptualization, validation, data curation, review

Mona Ismail Riad (professor of conservative dentistry): author, supervision

Amir Hafez, (associate professor of conservative dentistry): supervision

Mona Mahmoud Essa: data extraction, writing original draft

Yomna Khalaf: methodology, resources

Dina Kamal: methodology, resources

Sherifa Kandil: data extraction, writing original draft

Nancy Blamon: methodology, resources

Doaa Gamal Ashour, data extraction, writing original draft

Sherif Khadr: methodology, resources

Omar Nader: methodology, resources

Aya Mohamed: methodology, resources

Randa Elnaggar: data extraction, writing original draft

Sara Mady: software, methodology

Noura Alzayyat: data extraction, writing original draft

Rania Rashad: methodology, resources

Dina M. El Kadi (Dina Mounir Elkadi): data extraction, writing original draft

Elaziz RH (Rawda Hesham): data extraction, writing original draft

Dina Ezz (Dina EZZ): data extraction, writing original draft

Preface

Nanotechnology will definitely pave the way for the development of tools which would allow clinicians to diagnose and treat oral diseases at their earliest stage. The new era of nanodentistry will encompass precisely regulated analgesia, tooth regeneration, complete cure of hypersensitivity, and rapid orthodontic treatment. Nanotechnology in the future will have a great impact on dental diagnostics, prevention, and therapeutics. However, our book is very specific focused on the use of nanotechnology in the field of conservative dentistry covering all its aspects starting from diagnosis to restorative materials extending to tissue engineering and regeneration in comprehensive and analytical way, nevertheless cytotoxicity, hazards, and safety of these nanotechnology. This book includes all recent publications till 2020.

This textbook is relevant to researchers, professors, associate professors, and postgraduate students, in the dental field interested in nanotechnology, nanobiomaterials science, biomimetics, and dental materials. Moreover, this book could be used as a nanotechnology course in conservative dentistry for doctor degree or master degree programs.

Recent development in the field of material science and biomimetic engineering has brought on significant advances in material properties. This was especially achieved via nanometric based materials. Nowadays, the nanotechnology is widely used in different fields in industry as well as in the medical field especially in drug production and imaging. Moreover it has many effective and safe applications in the treatment of cancer by identifying and targeting the diseased cells, also drug delivery mode. Conversely the utmost benefits of nanotechnology applications are raised in the development of innovative bioactive medical treatments.

Our book is very specific. It focused on the use of nanotechnology in the field of conservative dentistry covering all its aspects starting from diagnosis to restorative materials extending to tissue engineering and regeneration in comprehensive and analytical way, nevertheless cytotoxicity, hazards, and safety of these nanotechnologies. This book includes all recent publications till 2020. This book takes a deep look into the health hazards research in the last decade focusing on nanomaterials used in restorative dentistry.

Mona Ismail Riad and Shereen Hafez Ibrahim

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

Suggested reading

Keerthana, S., & Kumar, A. (2020). Potential risks and benefits of zinc oxide nanoparticles: A systematic review. *Critical Reviews in Toxicology*, 50(1), 47–71. Available from https://doi.org/10.1080/10408444.2020.1726282.

Schmalz., et al. (2018). Scientific update on nanoparticles in dentistry. *International Dental Journal*, 68(5), 299–305. Available from https://doi.org/10.1111/idj.12394.

Shashirekha, G., Jena, A., & Mohapatra, S. (2017). Nanotechnology in dentistry: Clinical applications, benefits, and hazards. *Compendium of Continuing Education in Dentistry*, 38 (5), e1–e4.

Background and purpose

Nanotechnology has greatly transfigured the dentistry field. Recent development in the field of material science and biomimitic engineering has brought on significant advances in material properties. This was especially achieved via nanometric based materials. Nanomaterial is currently considered standard in many restorative materials. Hence the utmost benefits of nanotechnology applications are raised in the development of innovative bioactive medical treatments. Dental applications of nanomaterials not only created a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. Their high reactivity makes them a potential hazard for humans on a cellular level. As these restorative nanomaterials containing certain nanoparticles that remain functional in oral cavity over prolonged periods, it is mandatory to have the knowledge about their beneficial effects, their different clinical applicability in dentistry especially in Conservative dentistry regarding FDA approval, nevertheless, their toxicological or side effects in humans, cost effectiveness, and availability. Moreover, discussing the future prospective for dental tissue engineering was found exciting.

Acknowledgment

First, we are so grateful to *GOD* for blessing us throughout our life and for guiding and helping us to achieve this work. I must express my very profound gratitude to *our families* for providing us with unfailing support and continuous encouragement throughout our life.

We would like to thank with gratitude all our Professors of Conservative Dentistry, Cairo University, for their endless support and guidance. Their generous help was beyond imagination, and their kindness and patience were the light through the path; they have been a role model to everyone. Thank you for your valuable time, cooperation, and generosity which set this work possible as it is till the end.

We would also like to express our sincere thankfulness to the coauthors and collaborators for their contributions, support, and generous help in every way they could, for putting so much effort in this work, and for their valuable contribution in this work. Thank you again for your time, without you nothing would have been possible and this book would have not seen the light.

CHAPTER 1

Overview of emerging nanotechnology strategies in dentistry

Aya Abdel Fattah and Randa Abdel Rahman

Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt

1.1 Nanotechnology and nanoscience

Nanotechnology and nanoscience refer to the manipulation of matter at atomic, molecular, and supramolecular scales. Nanotechnology and nanoscience investigations involve studies related to their applications in different branches including chemistry, biology, physics, materials science, and engineering.

1.2 Nanometer

One nanometer is a billionth of a meter, that is, 10^{-9} times 1 m.

Symbol	Name	Factor
у	yokto	10-24
z	zepto	10-21
a	atto	10-18
f	femto	10-15
р	pico	10-12
n	nano	10-9
μ	micro	10 ⁻⁶
m	milli	10-3
С	centi	10-2
d	deci	10-1

However, something as small as an atom is impossible to see with the naked eye.

Microscopes needed to view things at the nanoscale were invented about 30 years ago. Two common types of microscopes are:

- Scanning tunneling microscope
- Atomic force microscope (Fig. 1.1)

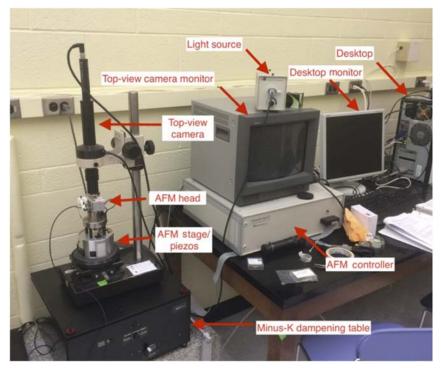


Figure 1.1 Atomic force microscope.

1.3 Champions of nanotechnology

The most prominent researchers and scientists in the field of nanotechnology are:

- The American physicist Richard Feynman

 He said, "There's plenty of room at the bottom," which is often held to have provided inspiration for the field of nanotechnology.
- Japanese scientist Norio Taniguchi

He is the first scientist to introduce the term "nanotechnology" to describe a technology that creates objects and features on the order of a nanometer.

American engineer Eric Drexler

He is the engineer who conducted seminal studies on the potential of molecular nanotechnology.