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Preface

The first edition of Principles of Tissue Engineering was

published almost a quarter-of-a-century ago—back in the

1990s when the term “tissue engineering” was first coine-

d—and quickly became the most widely relevant and

cited textbook in the field. Since that time there have

been powerful developments, including breakthroughs at

all stages of development, ranging from two Nobel Prizes

for pioneering work in the area of stem cells, which could

be used as an unlimited source of cells for repair and

engineering of tissues and organs, to actual clinical thera-

pies, ranging from skin and bladder replacement to carti-

lage, bone, and cardiovascular repair.

The fifth edition of “Principles” covers all of this tre-

mendous progress as well as the latest advances in the

biology and design of functional tissues and organs for

repair and replacement, from mathematical models to

clinical reality. We have also added Anthony Atala, the

W.H. Boyce Professor and Director of the Wake Forest

Institute for Regenerative Medicine, as a new editor and

have expanded the book to include a new section on

emerging technologies, including 3D bioprinting and bio-

manufacturing for tissue-engineering products. As in the

previous editions, the book attempts to simultaneously

connect the basic sciences with the potential application

of tissue engineering to diseases affecting specific organ

systems. While the fifth edition furnishes a much needed

update of the rapid progress that has been achieved in the

field in the last 6 years, we have retained the fundamen-

tals of tissue engineering, as well as those facts and sec-

tions which, while not new, will assist scientists,

clinicians, and students in understanding this exciting area

of biology and medicine.

The fifth edition of “Principles” is divided into an

introductory section, followed by 23 parts starting with

the basic science of the field and moving upward into

applications and clinical experience. The organization

remains largely unchanged, combining the prerequisites

for a general understanding of cellular differentiation and

tissue growth and development, the tools and theoretical

information needed to design tissues and organs, as well

as a presentation by the world’s experts of what is cur-

rently known about each specific organ system, including

breast, endocrine and metabolism, ophthalmic, oral/dental

applications, skin, and the cardiovascular, gastrointestinal,

hematopoietic, kidney and genitourinary, musculoskeletal,

nervous, and respiratory systems. We have again striven

to create a comprehensive book that, on one hand, strikes

a balance among the diversity of subjects that are related

to tissue engineering, including biology, chemistry, mate-

rial science, medicine, and engineering, while emphasiz-

ing those research areas that are likely to be of clinical

value in the future.

While we cannot describe all of the new and updated

material of the fifth edition, we continue to provide

expanded coverage of stem cells, including neonatal, post-

natal, embryonic, and induced pluripotent stem cells and

progenitor populations that may soon lead to new tissue-

engineering therapies for cardiovascular disease, diabetes,

and a wide variety of other diseases that afflict humanity.

This up-to-date coverage of stem cell biology and other

emerging technologies is complemented by updated chap-

ters on gene therapy, the regulatory process, and the chal-

lenges of tissue engineering for food and in vitro meat

production, which someday may end up a routine part of

our food system, potentially reducing environmental pol-

lution and land use. As with previous editions, we believe

the result is a comprehensive textbook that will be useful

to students and experts alike.

Robert Lanza, Robert Langer, Joseph Vacanti and
Anthony Atala
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Chapter 1

Tissue engineering: current status and
future perspectives
Prafulla K. Chandra, Shay Soker and Anthony Atala
Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States

Clinical need

Tissue and organ failure due to disease, injury, and

developmental defects has become a major economical

and healthcare concerns [1]. At present, use of donated

tissues and organs is the clinical practice to address this

situation. However, due to the shortage of organ donors,

the increasing number of people on the transplant waiting

lists, and an ever-increasing aging population, dependence

on donated tissues and organs is not a practical approach.

In addition, due to severe logistical constraints, many

organs from donors cannot be matched, transported, and

successfully transplanted into a patient within the very

limited time available. In the United States alone, more

than 113,000 people are on the National Transplant

Waiting list and around 17,000 people have been waiting

for more than 5 years for an organ transplant (US

Department of Health and Human Services, Organ

Procurement and Transplantation network; https://optn.

transplant.hrsa.gov; data as of February, 2019). To

address this critical medical need, tissue engineering (TE)

has become a promising option. TE and regenerative

medicine (RM) are multidisciplinary fields that combine

knowledge and technologies from different fields such as

biology, chemistry, engineering, medicine, pharmaceuti-

cal, and material science to develop therapies and pro-

ducts for repair or replacement of damaged tissues and

organs [2,3].

The process of TE is multistep and involves engineer-

ing of different components that will be combined to

generate the desired neo-tissue or organ (Fig. 1.1).

Today, this field has advanced so much that it is being

used to develop therapies for patients that have severe

chronic disease affecting major organs such as the kid-

ney, heart, and liver. For example, in the United States

alone, around 5.7 million people are suffering from

congestive heart failure [5], and around 17.9 million

people die or cardiovascular diseases globally (World

Health Organization data on Cardiovascular disease;

https://www.who.int/cardiovascular_diseases/en/). TE can

help such patients by providing healthy engineered tis-

sues (and possibly whole organ in future) to replace their

diseased tissue for restoring function. For example,

chronic kidney disease (CKD) is a worldwide health

crisis that can be treated, but it also depends on organ

donation. In the United States alone, around 30 million

people are suffering from CKD (Center for Disease

Control & Prevention; National Chronic Kidney Disease

Fact Sheet 2017; https://www.cdc.gov/kidneydisease/pdf/

kidney factsheet), while close to 10% of the population is

affected worldwide. Liver disease is another healthcare

problem, which is responsible for approximately 2 mil-

lion deaths per year worldwide [6]. Other diseases or

conditions that can benefit from TE technologies include

skin burns, bone defects, nervous system repair, craniofa-

cial reconstruction, cornea replacement, volumetric mus-

cle loss, cartilage repair, vascular disease, pulmonary

disease, gastrointestinal tissue repair, genitourinary tissue

repair, and cosmetic procedures. The field of TE, with its

goal and promise of providing bioengineered, functional

tissues, and organs for repair or replacement could trans-

form clinical medicine in the coming years.

Current state of the field

TE has seen continuous evolution since the past two dec-

ades. It has also seen assimilating of knowledge and tech-

nical advancements from related fields such as material

science, rapid prototyping, nanotechnology, cell biology,

and developmental biology. Specific advancements that

have benefited TE as a field in recent years include novel

1
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biomaterials [7], three-dimensional (3D) bioprinting

technologies [8], integration of nanotechnology [9], stem-

cell technologies such as induced pluripotent stem

cells (iPSCs) [9,10], and gene editing technology such as

Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR) [11]. All these have led to promising

developments in the field that include smart biomaterials,

organoids, and 3D tissue for disease modeling and drug

development, whole organ engineering, precise control

and manipulation of cells and their environments, and

personalized TE therapies.

Biomaterials are critical components of many current

TE strategies. Recent developments in this field that are

benefiting TE include synthesis of new biomaterials that

can respond to their local environment and cues (smart

biomaterials). Advancements in 3D bioprinting technolo-

gies are at the core of many developments in TE. It is

now possible to print multiple biocompatible materials

(both natural and synthetic), cells, and growth factors

together into complex 3D tissues, many with functional

vascular networks, which match their counterparts

in vivo. We have also learned a great deal about cell

sourcing, culture, expansion, and control of differentia-

tion. This is also true for stem cells, where new sources

such as placenta, amniotic fluid, and iPSCs have been

explored and optimized for use. Vascularization and

innervation in bioengineered tissue is a continuing chal-

lenge essential to warrant sustained efforts success of tis-

sues implanted in vivo would be very low. Therefore

there is a need for greater understanding of vasculariza-

tion and innervation as applied to bioengineered tissues.

This is an ongoing effort, and the results we are seeing

from various studies are encouraging. Biofabrication tech-

nologies are playing a great role in this regards.

Several engineered tissues are moving toward clinical

translation or are already being used in patients. These

include cartilage, bone, skin, bladder, vascular grafts, car-

diac tissues, etc. [12]. Although, complex tissues such as

liver, lung, kidney, and heart have been recreated in the

lab and are being tested in animals, their clinical transla-

tion still has many challenges to overcome. For in vitro

use, miniature versions of tissues called organoids are

being created and used for research in disease modeling,

drug screening, and drug development. They are also

being applied in a diagnostic format called organ-on-a-

chip or body-on-a-chip, which can also be used for the

above stated applications. Indeed, the development of 3D

tissue models that closely resemble in vivo tissue struc-

ture and physiology are revolutionizing our understanding

of diseases such as cancer and Alzheimer and can also

accelerate development of new and improved therapies

for multiple diseases and disorders. This approach is also

expected to drastically reduce the number of animals that

are currently being used for testing and research. In addi-

tion, 3D tissue models and organ-on-a-chip or body-on-a-

chip platforms can support advancement of personalized

medicine by offering patient-specific information on the

effects of drugs, therapies, environmental factors, etc.

Development of advanced bioreactors represent

another recent developments that are supporting clinical

translation of TE technologies. Such bioreactors can bet-

ter mimic in vivo environments by provide physical and

biochemical control of regulatory signals to cells and tis-

sue being cultured. Examples of such control include

application of mechanical forces, control of electrical pac-

ing, dynamic culture components, induction of cell differ-

entiation. Incorporation of advanced sensors and imaging

capabilities within these bioreactors are also allowing for

real-time monitoring of culture parameters such as pH,

oxygen consumption, cell proliferation, and factor secre-

tion from a growing tissue. 3D modeling is also a new

tool relevant to TE that provides great opportunities and

better productivity for translational research, with wide

clinical applicability [13]. Recent advancements in spe-

cific field that are helping advance TE are discussed next.

Smart biomaterials

Smart biomaterials are biomaterials that can be designed

to modulate their physical, chemical, and mechanical

FIGURE 1.1 Schematic representation of different aspects of tissue

engineering. Each component (materials, cells, and tissue architectures)

can be engineered separately or in combination to achieve the therapeu-

tic goals. Reprinted with permission from Khademhosseini A., Langer R.

A decade of progress in tissue engineering. Nat Protoc 2016;11

(10):1775�81. doi: 10.1038/nprot.2016.123 [4]. r2016 Springer

Nature Publishing AG.
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properties in response to changes in external stimuli or

local physiological environment (Fig. 1.2) [14,15].

Advances in polymer synthesis, protein engineering,

molecular self-assembly, and microfabrication technolo-

gies have made producing these next-generation biomater-

ials possible. These biomaterials can respond to a variety

of physical, chemical, and biological cues such as temper-

ature, sound, light, humidity, redox potential, pH, and

enzyme activity [16,17]. Other unique characteristics dis-

played by some smart biomaterials are self-healing or

shape-memory behavior [18]. The development of bioma-

terials with highly tunable properties has been driven by

the desire to replicate the structure and function of extra-

cellular matrix (ECM). Such materials can enable control

of chemical and mechanical properties of the engineered

tissue, including stiffness, porosity, cell attachment sites,

and water uptake. For hydrogels, use of reversible cross-

linking through physical methods, self-assembly, or ther-

mally induced polymer chain entanglement is creating

hydrogels that undergo structural changes in response to

external stimuli [19,20]. Another class of hydrogels that

are recent developments is called self-healing and shear

thinning hydrogels. These materials are now being used

to develop injectable biomaterials, which have low vis-

cosity during application (injection) due to shear thinning

and once at their target site, they self-crosslink (or heal)

to fill the defect site [21]. Injectable biomaterials are also

often loaded with drugs, biologics, and cells. For exam-

ple, Montgomery et al. created an injectable shape-

memory biomaterial for minimally invasive delivery of

functional tissues [22]. In other applications, tissue glues

are being developed using smart biomaterials, where they

are used to bond and allow the tissue to self-heal. An

example of this approach is a study by Bhagat and Becker

FIGURE 1.2 Different applications of smart biomaterials in the fields of tissue engineering and related fields. (A) Stimuli-responsive material that

can promote cell differentiation and tissue growth; (B) injectable biomaterial loaded with cells, drugs, or bioactive molecules can be delivered less-

invasively and can promote healing of tissue at the target damage site; (C) swelling polymer can be delivered as small scaffolds but can expand

in vivo to achieve 3D structure of the target defect after exposure to water; (D) shape-memory and temperature-responsive soft material can be used

as a tissue adhesive; (E) star-shaped delivery system for sustained drug release in the gastrointestinal tract; (F) nanoparticle-based stimuli-responsive

drug delivery system for systemic application; (G) materials for enhanced cancer immunotherapy using targeted delivery of chimeric antigen receptor

T cell. 3D, Three-dimensional. Reprinted with permission from Kowlaski PS, Bhattacharya C, Afewerki S, Langer R. Smart biomaterials: recent

advances and future directions. ACS Biomater Sci Eng 2018;4(11):3809�17 [14]. r2018 American Chemical Society.
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who created a chondroitin-based tissue glue that helps

direct improved tissue repair [23].

The ECM is a complex and dynamic structural scaf-

fold for cells within tissues and plays an important role in

regulating cell function [1]. Given the role of the ECM in

structural support of tissues, there has been significant

effort in developing ECM-based scaffolds for TE and RM

[24,25]. However, as with all materials implanted into the

body, the immune response significantly influences the

ability of scaffold-containing engineered tissues to inte-

grate and functionally interact with the host [26]. Thus an

emerging strategy in TE is to design materials that can

directly control the host immune response [27]. For exam-

ple, the Arg-Gly-Asp (RGD) of ECM proteins can exert

immunomodulatory effects on both innate and adaptive

immune cells while also having an inhibitory effect on

phagocytosis and neutrophil chemotaxis [28]. In the con-

text of TE, synthetic ECM-mimetic hydrogels containing

the RGD sequence have been shown to cause increased

cellular adhesion on polymer scaffolds and also have an

antiinflammatory effects from macrophages [29,30].

Under certain conditions, the RGD peptides have also

been found to effect cytokine secretion from T cells [31].

Therefore use of RGD as part of TE scaffolds or hydro-

gels can be used to enhance cells adhesion in addition to

controlling the ability of macrophages to degrade and

remodel the surrounding tissue environment.

Matrix metalloproteinases (MMPs) are a family of

proteases that not only selective degrade a wide variety of

ECM proteins but also interact with bioactive molecules,

some of which have immunomodulatory effects [32,33].

So, another strategy to control the extent of matrix remo-

deling, integration of engineered tissues into native host

tissues or invasion of immune cell into implanted materi-

als could be by incorporating MMP-sensitive peptides

into the TE constructs. Examples of this approach include

studies by Patterson and Hubbell, who showed that the

rate of scaffold material degradation depends on the

MMP-sensitive peptide sequence, the type of MMP, and

also the MMP concentrations [34]. In a separate study,

West and Hubbell created biomimetic poly(ethylene gly-

col) (PEG) hydrogels that incorporated peptides that could

be degraded by either a fibrinolytic protease (plasmin) or

a fibroblast collagenase (MMP-1) [35,36]. One drawback

of this using MMP-sensitive peptides in TE constructs is

their immunogenicity and more work will be needed to

get around this issue. Possibly, use of immunomodulatory

domains along with MMP-sensitive peptides could sup-

port long-term viability and integration within native host

tissues.

Another category of smart biomaterials is multidomain

peptides (MDPs) hydrogels. These are injectable ECM

mimetic materials that are engineered to form self-

assembling meshes at the target site [37,38]. These MDPs

can also control cellular behavior. For example, in a

mouse study by Moore et al., MDPs alone were found to

be biocompatible and had prohealing effects in vivo [39].

Hydrogel have also been prepared from multiple ECM

mimetic peptides for the purpose of enhancing the viabil-

ity of the biomaterial in vivo. Smart biomaterials are

going to have a big impact on 3D printing of tissues and

organs. By combining smart biomaterials with 3D bio-

printing, a wide variety of architectures can be created

which can further offer control over how these materials

perform in a biological environments. Smart biomaterials

can also be made from proteins. Some protein�protein

interactions can be utilized to physically crosslink protein

chains, while small coiled-coil domains within some pro-

teins (called leucine zippers) can self-assemble into super-

helical structures. Leucine zippers have been used to

make hydrogels by physically crosslinking protein

domains [40]. The stability of the leucine zipper self-

assembly (and hence the hydrogel) can be controlled by

changing the temperature. Another way to control the sta-

bility of some protein-based hydrogels is by arrangement

of the interacting domains [41].

One drawback of hydrogels made of self-interacting

protein domains is their low-to-moderate mechanical

properties, which is not ideal for TE applications.

However, these week interactions can be reinforced by

introducing covalent bonds into the network (e.g., disul-

fide bonds between cysteine in the protein chains). This

will not only improve the mechanical properties of the

hydrogel but also its stability [42].

Cell sources

For TE, a variety of cell types are now being used. They

include autologous, allogeneic, progenitors, adult unipo-

tent or multipotent stem cells and iPSCs (Fig. 1.3). For

some applications, the ability to expand a sufficient

number of autologous cells from a small biopsy is well-

established [44]. A good example is bladder augmenta-

tion, where smooth muscle and urothelium can be easily

isolated from then native tissue, expanded in culture and

used for engineering a new bladder tissue. However, in

many cases, it is challenging to harvest and/or expand

enough appropriate autologous cells for this purpose.

Examples of such cell types include hepatocytes, kidney

cells, insulin-producing pancreatic beta cells, cardiomyo-

cytes, neurons. New sources or methods to obtain these

cell types in quantities can advance engineering of these

tissues/organs and significantly benefit treatment of asso-

ciated diseases. Immature precursor cells present within

tissue such as skin, cartilage, muscle, and bladder are

essential for the expansion of corresponding cells from

biopsies and enabling engineering of neo-tissues [45].

The extension of this approach to other tissue and organ
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systems will depend greatly on finding sources of appro-

priate stem and progenitor cells.

Three major stem-cell sources are currently under

intensive investigation:

1. embryonic stem (ES) cells, which are derived from

discarded human embryos, and the equivalent embry-

onic germ (EG) cells;

2. iPSCs derived by genetic reprograming of somatic

cells; and

3. Autologous or allogeneic adult tissue stem cells

(sourced from fetal, neonatal, pediatric, or adult donor

tissue).

Shared features of all stem cells include their capacity

self-renewal and their ability to give rise to particular

classes of differentiated cells. The ES, EG, and iPSCs can

serve as precursors for many specialized cell type found

during normal development and therefore are pluripotent.

Adult stem cells are generally restricted to limited sets of

cell lineages, hence called unipotent (constrained to a sin-

gle fate) or multipotent (can give rise to multiple cell

types). It appears likely that multiple tissue-engineered

products based on each class of stem-cell source will be

tested in the clinic in the coming years. Previous clinical

and commercial experience sheds light on key differences

between personalized products containing autologous

cells and off-the-shelf products containing allogeneic

cells. The vast majority of human studies till date have

focused on using either adult stem or progenitor cells.

More recently, clinical trials have begun with tissue-

engineered products derived from pluripotent stem cells

and their future looks promising.

The first clinical tissue-engineered products to achieve

marketing approval from the US Food and Drug

Administration (FDA) were skin substitutes that were

used for wound healing. Examples of such products

include Dermagraft (Shire Regenerative Medicine Inc.,

CT, United States) and Apligraf (Organogenesis, MA,

United States), which were off-the-shelf products that

used cells (fibroblasts for Dermagraft and fibroblasts plus

keratinocytes for Apligraf) expanded from donated human

foreskins. Whereas fibroblasts have been cultured in vitro

since the early 20th century, the successful large-scale

culture of human keratinocytes represented an important

breakthrough for RM [46]. The success of off-the-shelf

skin substitutes can be attributed to the lack of antigen-

presenting cells, because of which they were not acutely

rejected despite the inevitable histocompatibility mis-

matches between donors and recipients [47,48].

Eventually, the cells in the skin substitutes could be

rejected, but the grafts has enough time for patients’ own

skin cells to regenerate. This stands in contrast to standard

tissue/organ transplantation in which immune rejection is

a major concern and immunosuppressive drug therapy is

generally part of the application of allogeneic grafts [49].

Tissue-engineered products based on harvesting and

expanding autologous cells containing stem and/or pro-

genitor populations have also been developed success-

fully. Prominent examples include Epicel (Genzyme, MA,

United States), a permanent skin replacement product

based on expanded keratinocytes for patients with life-

threatening burns, and Carticel (Genzyme, MA, United

States), a chondrocyte-based treatment for large articular

cartilage lesions [50,51].

Cell sources
for

tissue engineering

Embryonic stem
cells

Morula Chorionic villi

Umbilical cord

Amniotic fluid Blood Bone marrow

Adipose tissue

Somatic cells

Fetus-derived stem
cells

Adult stem
cells

Induced pluripotent
stem cells

E.g., ESC
E.g., UC-MSC/EPC, CV-

EPC,AF-MSC/EPC
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FIGURE 1.3 Different sources of

cells for tissue engineering. Fetus-

derived and induced pluripotent

stem cells are gaining more atten-

tion for tissue engineering applica-

tions. Reprinted from Al-Himdani

S, Jessop ZM, Al-Sabah A,

Combellack E, Ibrahim A, Doak

SH, et al. Tissue-engineered solu-

tion in plastic and reconstructive

surgery: principles and practice.

Front Surg 2017;4:4. doi: 10.3389/

fsurg.2017.00004. [43]. r2017 Al-

Himdani, Jessop, Al-Sabah,

Combellack, Ibrahim, Doak, Hart,

Archer, Thornton and Whitaker.
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Embryonic stem cells

ES cells and EG cells are indeed quite similar to early

germ cells, with an apparently unlimited self-renewal

capacity and pluripotency. Their great degree of plasticity

represents both a strongest virtue and a significant poten-

tial limitation to their use in TE. A major ongoing chal-

lenge is in efficiently obtaining pure populations of

specific desired specialized cell types from human ES

cells [52,53]. Efforts during recent years have yielded

more robust methods to isolate and grow ES cells under

conditions consistent with Good Manufacturing Practice

(GMP) and to generate differentiated cell products. While

initial efforts have focused on cell therapies, these

advances will positively impact production of tissue-

engineered constructs using ES cells. Human ES cells are

considerably more difficult to isolate and maintain stably

in culture than the cell types that have previously been

used in clinical testing. However, they can now be

derived, grown, and cryopreserved without exposure to

nonhuman cells or proteins, even under a GMP environ-

ment [54,55]. In the future, use of bioreactors, microcar-

riers, along with improved xeno-free and serum-free

media and possibly small molecules that inhibit spontane-

ous differentiation of these cells would facilitate expan-

sion of these stem cells to population sizes that are

normally required for product development and clinical

application [56,57].

Human tissues include more than 200 distinct cell

types, and ES cells, in principle, can give rise to all of

them. The historical approach of allowing ES cells to dif-

ferentiate spontaneously has now been supplanted.

Current strategies employ staged differentiation guided by

knowledge of signaling events that regulate normal

embryonic development [58]. For example, fine tuning of

the exposure of early embryonic cells to the growth factor

Nodal (a member of the transforming growth factor beta

or TGF-β family) or its analog Activin A, in conjunction

with other growth factors or small molecules, can now

allow consistent generation of endoderm-specific cells

from ES cells in vitro [59,60]. This is an early, but

key milestone in a multistep process to generate differen-

tiated cells that can eventually be used for TE of tissues/

organs like the liver and pancreas. Conversely, inhibition

of Nodal/Activin signaling favors the production of ecto-

derm specific cells, a precursor for neural lineage cells

[61].

Despite substantial challenges, the first ES-cell-

derived therapeutic product to enter clinical trials was the

human ES-cell-derived oligodendrocyte progenitors

(Geron Corporation; CA, United States) for stimulating

nerve process growth in subjects with spinal cord injury

[62]. Similarly, ES-cell-derived retinal pigment epithe-

lium cells (Advanced Cell Technology, now Astellas

Institute for Regenerative Medicine; CA, United States)

were used in clinical trials in patients to treat Stargardt’s

macular dystrophy and dry age-related macular degenera-

tion. Encouraging results from such clinical studies using

ES cell-derived product will have a positive impact to

develop tissue-engineered products from pluripotent stem

cells in the near future. Areas of clear unmet medical

need that might benefit from stem-cell-derived products

include type 1 diabetes and Parkinson’s disease. For type

1 diabetes, research at a biotech company called Viacyte

Inc. (CA, United States) similarly pursued the produced

progenitors of pancreatic endocrine cells from human ES

cells using growth factors and hormones [63]. The pro-

genitor cells from the final-stage differentiation in vitro

were able to mature further in vivo to yield glucose-

responsive β-like cells [64]. As a potential therapy for

Parkinson’s disease, significant advances have been made

in the production of functional midbrain dopaminergic

neurons by staged differentiation from ES cells [65,66].

Studies in the past few years have demonstrated that effi-

cient grafting of these cells can lead to physiological cor-

rection of symptoms in several animal models, including

nonhuman primates [67]. A particular safety concern is

that undifferentiated pluripotent ES and iPS cells form

teratomas in vivo. The risk of tumorigenicity makes it

essential to rigorously determine the residual level of

undifferentiated stem-cell population in any therapeutic

product derived from ES or iPS cells [68]. It will also be

valuable to determine whether a small number of undif-

ferentiated pluripotent stem cells can be introduced into

human patients without significant risk of tumor growth

and if this threshold is influenced by use of immune sup-

pressive drugs during treatment.

Induced pluripotent stem cells

Theoretically, the development of iPSCs represent the

most direct way to ensure immune compatibility of

tissue-engineered products when the recipient themselves

serve as the donor. Generation of iPSCs through repro-

graming of mature somatic cells to a pluripotent state was

first accomplished by ectopic expression of four transcrip-

tion factors: OCT4 and SOX2, both with KLF4 and c-

MYC [69] or NANOG and LIN28 [70]. The resulting

iPSCs closely resembled ES cells in key properties such

as the capacity for extensive self-renewal, ability to dif-

ferentiate to multiple cell lineages, and generation of tera-

tomas in vivo. Initial studies on reprograming of

fibroblasts soon were extended to a variety of other cell

types such as peripheral blood cells [71], cord blood cells

[72], keratinocytes from hair shafts [73], and urine-

derived cells [74]. Many recent developments have

advanced this reprograming technology toward a safer,

efficient translation toward therapeutic products. Also,
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improved methods to deliver the pluripotency factors can

minimize the risk of unintended permanent genetic modi-

fication of iPSCs, particularly integration of an oncogene

such as c-MYC and thereby decrease the potential for

future tumorigenicity [75]. One approach is being pursued

for this is to transiently deliver the factors using various

nonintegrating viral or plasmid vector systems.

Reprograming also can be achieved by direct delivery of

either synthetic messenger RNA (mRNA) encoding the

pluripotency factors or of the protein factors themselves

[76].

A recent development in the cellular reprograming

field has centered on efforts to bypass the circuitous route

of resetting cells to a pluripotent ground state and then

inducing them to a desired lineage. Instead, there are

efforts to achieve directed “trans-differentiation” between

cell lineages. A number of studies have reported that

fibroblasts or other adult cells can potentially be repro-

gramed directly to various specialized cell types such as

neural progenitors [77], cardiomyocytes [78], endothelial

cells [79], and hepatocytes [80]. However, there are still

many queries about direct lineage-to-lineage reprogram-

ming must be addressed. Some of these include the fol-

lowing questions: do the differentiated cells accurately

mimic the genetic and functional characteristics of the tar-

get cells, or is there residual signatures of the original

cells? Do the differentiated cells display fully adult phe-

notypes? Is the risk of introducing unwanted genetic or

epigenetic abnormalities less or greater than in reprogram-

ming through a pluripotent state? The answers to these

questions will clarify the value of direct cell lineage con-

versions and the future of this approach for TE and RM

applications.

Adult stem cells

Despite the promise of ES and iPSCs for TE and RM, the

challenges of controlling lineage-specific differentiation,

eliminating residual pluripotent stem cells, and confirm-

ing the safety and phenotype accuracy of then final pro-

ducts will likely delay the clinical translation and

regulatory approval of such products. By contrast, adult

stem cells represent a more straight-forward approach to

rapid clinical development of cell-based and tissue-

engineered products. Adult stem cells are present in many

tissues throughout fetal development and postnatal life

and are committed to restricted cell lineages [81,82].

Also, intrinsically they are not tumorigenic. At present,

the most commonly used adult stem cells for development

of cell therapy and TE applications are bone marrow-

derived mesenchymal stromal or stem cells (MSC). MSCs

can give rise to a number of tissue types, including carti-

lage, bone, adipose, and some types of muscle [83]. MSC

have also generated considerable interest for

musculoskeletal and vascular TE [84,85]. An advantage

of using MSCs is that they can be easily harvested from

liposuction specimens. An unexpected discovery that is

further benefitting the use of MSCs for RM is then obser-

vation that they can be readily transplanted into alloge-

neic recipients without significant immune rejection [86].

This ability to avoid acute immune rejection in the host

results from a variety of mechanisms, most notably the

secretion of antiinflammatory cytokines [87]. Recent clin-

ical trials have also assessed MSC-based cell therapy to

treat graft versus host disease (GvHD) and various

inflammatory or autoimmune conditions [88,89]. In fact,

the first regulatory approvals for sale of a bone marrow-

derived MSC product (Prochymal; Osiris Therapeutics;

MD, United States) was for treatment of GvHD.

The therapeutic benefits of MSCs can also be through

secretion of trophic factors. This has been seen in MSC-

based cell therapy for heart disease, where delivery of

autologous or allogeneic cells into the left ventricle wall

for treatment of ischemic cardiomyopathy in a large ani-

mal model or even human clinical trials showed induction

of new cardiomyocytes from endogenous cardiac stem

and progenitor cells through trophic effects [90]. The

injected MSCs also apparently contribute to positive

remodeling of damaged heart tissue long after the initial

damage [91]. Another study has demonstrated that com-

bined delivery of MSCs with adult cardiac stem cells can

substantially improves outcomes in the porcine model of

ischemic cardiomyopathy [92]. This interesting result can

be translated to generating improved tissue-engineered

cardiac constructs by incorporating both the above stem

cell types. Treatment of neurodegenerative conditions

remains a challenge. Several years ago a company called

Stem Cells Inc. (CA, United States) carried out clinical

studies using a brain-derived neural stem-cell preparation

called human central nervous system stem cells (HuCNS-

SC), in a handful of subjects with neurological degenera-

tive conditions referred to as neuronal lipoid fuscinosis

(Batten’s Disease) and Pelizaeus�Merzbacher disease

[93]. Study data, including magnetic resonance imaging

(MRI), demonstrated the durable engraftment of these

cells and suggested that they contributed to myelination

in recipient’s brain tissue. The same company later began

clinical trials using the same neural-derived stem cell in

human subjects with dry age-related macular degeneration

and spinal cord injuries.

Hepatic stem cells (HpSC) represent another human

adult stem-cell population that can gives rise to parenchy-

mal cells within tissues and organs [94]. The HpSCs are

isolated from the liver and can be enriched from cadav-

eric fetal, neonatal, or fully mature donors by selection

with a monoclonal antibody to the surface marker CD326.

Exposure to certain growth factors (such as epidermal

growth factor or EGF) or different tissue-specific matrix
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molecules (such as liver proteoglycans) can induce effi-

cient differentiation of the HpSC to either hepatocytes or

cholangiocytes (bile duct cells) [95]. An early clinical

study for the assessment of CD326-positive hepatic stem

and progenitor cells on 25 subjects with decompensated

liver cirrhosis found that delivery of these cells to the

liver was best achieved by infusion via the hepatic artery.

Also, at 6 months postinfusion, improvements in a num-

ber of clinical parameters were noted, including a signifi-

cant decrease in the mean Mayo End-stage Liver Disease

score (P, .01).

Another clinical study with HpSC transplantation

achieved encouraging results using allogeneic donors, no

human leukocyte antigen (HLA) loci matching, and with-

out the use of immune suppressive drugs [94]. It is con-

ceivable that HpSC (and possibly other fetal liver-derived

stem cells) are particularly nonimmunogenic because they

express only low levels of major histocompatibility com-

plex (MHC) Class I and lack detectable MHC Class II

(similar to ES cells). In addition, the liver is significantly

immune privileged with respect to transplant rejection.

Another hypothesis for this immune privilege could be

that since this particular HpSC population were are iso-

lated by immune-selection using antibody-coated beads

specific for CD326, some angioblast-like mesenchymal

cells could have copurified. Angioblast-like mesenchymal

cells, just like MSC, are known to secrete immunomodu-

latory factors that could protect the HpSC and differenti-

ated cells derived from them against immune rejection in

the liver.

A new source of human adult stem-cell population,

which can be used for engineering of pancreatic islet�like

structures to treat insulin-dependent diabetes, was identi-

fied in peribiliary glands (found in the extrahepatic biliary

tree located between the liver and pancreas) [95,96].

Molecular characterization of these biliary tree stem cells

suggests that they comprise a population of endodermal

stem cells that are more primitive than HpSC identified

within the liver. Some of these biliary tree stem cells do

not express CD326 but appear to be precursors of the

CD326-positive HpSC. The biliary tree stem cells can

proliferate extensively when cultured in the serum-free

defined medium developed for HpSC.

Whole organ engineering

Tissue and organ failure is currently one of the biggest

health issues, whose treatment is still an unmet medical

need. This problem is ever increasing, with more than

100,000 patients being on the organ donor waiting lists in

the United States alone [97]. Lack of sufficient organ

donors and availability of healthy tissues and organs are

further complicating this situation. TE is providing hope

in this direction, with many efforts directed toward

bioengineering tissues and even whole organs [98].

Decellularized tissues are gaining popularity as scaffolds

for TE. These are prepared by removing cells from origi-

nal tissues using mild detergents [99], after which they

can be processed into different forms such as blocks, or

powder for use. These decellularized materials represent

the ECM of tissue from which they are derived and con-

sist mainly of collagen. Since the shape, size, and com-

plex structural properties of the native tissue are also

maintained, decellularized tissue represent the ideal scaf-

folds for TE.

Decellularization can be performed using chemical,

physical/ mechanical, or combination methods. Chemical

methods include use of mild surfactants such as sodium

dodecyl sulfate (SDS), sodium deoxycholate, 3-[(3-chola-

midopropyl) dimethylammonio]-1-propanesulfonate,

Triton X-100, tridecylalcohol ethoxylate, and acid/bases

such as per-acetic acid [100]. Physical/mechanical meth-

ods for decellularization are used in situations where there

are concerns regarding the possible toxicity of the chemi-

cals and nondesirable destruction of ECM proteins.

Physical/mechanical treatments include the use of high

hydrostatic pressure, freeze�thaw, or super-critical car-

bon dioxide (CO2). The decellularization strategy is being

used for TE to treat hernia repair [98,101], periodontal tis-

sue [102], tendon [103], bone [104], vasculature [105],

uterine tissue [106], heart valves [107], etc. Recent

advancements in decellularized tissue research have

resulted in successful decellularization of whole organs

for whole organ reconstruction. Examples include liver

[108], kidney [109], lung [110], and heart [111].

Clinical applications of decellularized ECM-based

scaffolds are also on the rise. However, they have been

limited to engineering of less complex tissues related to

structural or reconstructive applications. It is noteworthy

that many of the FDA-approved products on the market

are derived from xenogeneic or allogeneic decellularized

tissue ECM. Examples include SynerGraft for repair of

human pulmonary heart valve (CryoLife; GA, United

States), AlloDerm Regenerative Tissue Matrix (human

dermal graft; LifeCell Corp, now Allergen, NJ, United

States), and Meso BioMatrix Surgical Mesh (DSM

Biomedical; PA, United States). Clinical trials have also

been carried out using more complex structures made

from decellularized ECM-scaffolds. One examples is a

tissue-engineered trachea [112], which had long-term

patency (at least 5 years posttransplantation), was

completely cellularized and vascularized and did not pro-

voke a significant immunogenic response [113].

Sometimes, the decellularization process can damage

certain critical components needed for new tissue forma-

tion, such as endothelial basement membrane of the vas-

culature. In such cases, a practical strategy would be to

add synthetic materials to promote functions. For
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example, some researchers have used the immobilization

of anticoagulants, such as peptides [114] or heparin [115],

to the endothelium of the decellularized vessel to prevent

blood coagulation inside the blood vessels during the

regeneration process. A new avenue in decellularized tis-

sue research is use of a device that links native tissues to

synthetic materials. Here the decellularized tissue acts as

an intermediate material, and then linking device ensures

compatibility between the native tissue and synthetic

materials at the molecular level. An example for this

approach preparation of a decellularized skin dermis and

poly(methyl methacrylate) (PMMA) complex by immers-

ing the decellularized dermis in methyl methacrylate

monomers, followed by polymerization [116]. Testing

showed that this composite elasticity similar to the skin

dermis, while the compressive modulus value was

between that of the dermis and PMMA.

Biofabrication technologies

Biofabrication combines the principles of engineering,

material science, and biology. It is a great toolbox that

promise to change the outcome of many biomedical disci-

plines, particularly TE and RM. In addition, it also holds

great potential for development of physiological 3D

in vitro models, where complex tissue constructs are cre-

ated that have a high degree of structural and functional

similarities to native tissues. For TE, the most commonly

used biofabrication technologies include (1) electrospin-

ning; (2) drop-on-demand technologies such as ink-jet 3D

bioprinting; (3) fused deposition modeling technologies

such as extrusion-based 3D bioprinting; and (4) light-

based technologies such as stereolithography (SLA) and

laser-assisted bioprinting [117] (Fig. 1.4). Recent trends

in electrospinning, inkjet printing, and extrusion-based 3D

bioprinting are discussed next:

Electrospinning

Electrospinning refers to a technique for fabricating

fibrous scaffolds [121] (Fig. 1.4B). The advantages of

electrospinning as a scaffold fabrication technique include

simple setup, versatility, and relative low-cost, which has

supported use in TE applications, from skin grafts to vas-

cular grafts to drug delivery devices [122�125]. For TE,

a wide range of fiber architectures have been created,

from scaffolds with uniform fibers to fibers with gradient

properties, fibers with core�shell morphology, and scaf-

folds with patterned fiber depositions [126,127]. This has

enabled researchers to create complex TE strategies to

better mimic in vivo tissue structure and function. In spite

of the several advantages of electrospun fibers and their

scaffolds, one inherent limitation is the relatively poor

cellular infiltration into the depth of these scaffold. This

can happen due to high-fiber packing densities resulting

in small and uneven pore sizes. Recent approaches in the

field of electrospinning that have tried to address these

limitations and expand the use of electrospun scaffolds in

TE include use of postprocessing procedures and sacrifi-

cial components [128,129]. Some recent developments in

electrospinning include modification of the electrospin-

ning setup, new electrospinning processes, and new meth-

ods to achieve complex mesh composition and

architectures (Table 1.1).

Modification of the electrospinning setup have been

carried out to provide better fiber orientation, control of

fiber blending or cospinning, and targeted fiber collection.

Examples include use of a rotating mandrel [130], gap

electrospinning [131], and magnetic electrospinning

[132,133]. The description of these methods and their spe-

cific advantages are listed in Table 1.1. In the past

decade, a variety of new electrospinning processes have

been developed with the aim of generating more varied

and complex fiber geometries. Prominent among these

methods are coaxial electrospinning [134], fiber blending

[135,136], emulsion electrospinning [137,138], and edge

electrospinning [139,140]. The description of the new

electrospinning processes and specific advantages of each

are listed in Table 1.1. In coaxial electrospinning, since

the fiber generation process occurs rapidly, there is no

possibility of any mixing of the core and shell polymers.

Examples of electrospinning using fiber blending include

creation of a polyurethane (PU)-gelatin bicomponent

fibrous scaffold for wound dressing applications [146]

and formation of an RGD peptide cell-adhesive gradient

through the depths of a scaffold to direct cellular migra-

tion [147]. Fiber blending represents a future area of

advancement for electrospinning and its use in creating

more in vivo�like scaffolds.

Emulsion electrospinning is mainly used for delivery

applications, where drugs, enzymes, growth factors, etc.,

are often emulsified within hydrophobic polymers, so that

their bioactivity is retained and sustained release can be

achieved [137,138]. To address the issue of speed (elec-

trospinning is a slow process), a method called edge elec-

trospinning [139,140] has been developed. An examples

is a study by Thoppey et al. who used edge electrospin-

ning of polycaprolactone and saw an increase in the pro-

duction rate by about 40 folds [140]. New electrospinning

methods that have been designed to achieve complex

mesh composition and architectures include coelectrospin-

ning [141.142], hydrospinning [143], and 3D electrospin-

ning [144,145]. One example of coelectrospinning is

when a natural polymer is used along with a synthetic

polymer, the cellular behavior and the mechanical proper-

ties of the resulting scaffold can be independently con-

trolled by altering the weight ratio of each material [142].

Examples of hydrospinning include a study where
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scaffolds with high porosity were created that allowed for

better cellular infiltration [143] and another where aniso-

tropic scaffolds with layers that altered in alignment were

created for better tendon TE [148]. Examples of 3D elec-

trospinning include fabrication of interconnected tubes

with different structures and patterns [144] and recon-

struction of outer ear using an ear-shaped collector to gen-

erate the scaffolds [145]. Achieving optimum cellular

infiltration within electrospun scaffolds has been a chal-

lenge and an intrinsic limitation of the electrospinning

method. A variety of methods that are being developed to

improve cellular infiltration and direct their behavior

within electrospun scaffolds include variations of the elec-

trospinning process (as discussed above), use of postpro-

cessing procedures, and incorporation of biochemical

cues.

Another way to decrease packing density and increase

pore size within electrospun scaffolds is by using sacrifi-

cial components during coelectrospinning [149,150].

After fabrication, the sacrificial component is removed by

treating the scaffold with an aqueous solution.

Postelectrospinning processing (postprocessing) of the

scaffolds is another practical way to enhance cellular pen-

etration. Postprocessing methods include use of laser abla-

tion to pattern pores into the scaffold [151], use of a

metal comb to separate fibers after the electrospinning

[152], and used of ultrasonic energy to mechanically agi-

tate fibers immersed in a liquid [153]. Till now, the most

effective method to enhance cellular infiltration within

electrospun scaffolds has been the use of dynamic cell

culture. Dynamic cell cultures have been achieved for this

purpose by using either simple setups such as an orbital

FIGURE 1.4 Different types of biofabrication technologies. (A) Stereolithography, showing an example with bioprinting of a prevascularized tissue;

(B) electrospinning; (C) different types of 3D bioprinting, including laser-induced bioprinting, inkjet-based bioprinting, and extrusion-based bioprint-

ing. 3D, three-dimensional. Reprinted with permission from (A) Zhu W., Qu X., Zhu J., Ma X., Patel S., Liu J., et al. Direct 3D bioprinting of prevas-

cularized tissue constructs with complex microarchitecture. Biomaterials 2017; 124:106-115. doi: 10.1016/j.biomaterials.2017.01.042. r2017

Elsevier Ltd.[118]; (B) Ghosal K, Chandra A, Praveen G, Snigdha S, Roy S, Agatemor C, et al. Electrospinning over solvent casting: tuning of

mechanical properties of membranes. Sci Rep, 2018, 8, Article number: 5058. r2018 Springer Nature Publication AG [119]; (C) Moroni L, Burdick

JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater,

2018, 3:21�37; r2018 Springer Nature Publication AG [120].
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TABLE 1.1 New methods and recent trends in electrospinning.

Trend Method Description Advantages References

Modification of
the
electrospinning
setup

Rotating mandrel A rotating mandrel is used to orient
and collect fibers

Controlling fiber alignment [130]

Gap
electrospinning

Combinations of electrodes and/or
electric charges are used to create
varied fiber alignments

Creating multilayered scaffolds
with varied fiber alignment

[131]

Magnetic
electrospinning

Polymer solution is magnetized and
a magnetic field is used to stretched
the fibers and align them across a
gap

Controlling fiber alignment;
collecting fibers over raised
topographies; creating wavy or
curly fiber architectures

[132,133]

New
electrospinning
processes

Coaxial
electrospinning
(also called
core�shell
electrospinning)

Two separate polymer solutions are
fed into concentrically arranged
needles, resulting in a compound
polymer jet where the core and shell
polymers are separate

Creating fibers from difficult to
use materials; electrospinning
immiscible blend of polymers;
creating hollow fibers

[134]

Fiber blending Two or more polymer solutions fed
through a mixing head to enable
complete blending of the materials

Incorporating properties of two
or more different polymers in a
single fiber; creating bi- or
multicomponent fibers;
generating gradients of
components across the depth of
a scaffold

[135,136]

Emulsion
electrospinning

Bioactive reagents are encapsulated
within hydrophobic polymers or a
dissolvable material is emulsified
within the primary polymer and later
removed

Incorporation and controlled
release of bioactivity compounds
within electrospun fibers;
creating porous fibers

[137,138]

Edge
electrospinning

High voltage is applied to multiple
fluid streams at once so that multiple
jets can be produced from a single
spinneret

Substantially increases the fiber
generation and collection speed;
suitable for industrial production
of electrospinning

[139,140]

Methods to
achieve complex
mesh
composition and
architectures

Coelectrospinning Simultaneous electrospinning from
multiple spinnerets onto the same
collector

Fabricating composite scaffolds
that have more than one type of
polymer fiber; controlling ratio
and gradient of different
materials within the scaffold;
increasing mesh pore to allow
for cell infiltration

[141,142]

Hydrospinning Electrospun fibers are collected on
the surface of a water bath instead of
the traditional conductive metal

Creating scaffolds with layers
that have altered alignments;
increasing scaffold porosity for
better cellular infiltration

[143]

3D
electrospinning

3D collectors are used to form
fibrous architectures such as
multilayered stacks or tubes

[144,145]

3D, Three-dimensional.
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shaker [154] or a complex system such as a flow perfu-

sion bioreactor [155].

Inkjet three-dimensional bioprinting

3D bioprinting is a process in which biomaterials or bio-

materials combined with cells are deposited in predefined

patterns, layer-by-layer using a bottom-up assembly

approach to create a 3D biological structure [8]. This

technology is making it possible to recapitulate the struc-

ture, composition, and complexity of human tissues and,

ultimately, may lead toward whole organ engineering for

clinical use. Inkjet 3D bioprinting is a method that uses

droplets of inks (polymers, cells, or combinations of the

two) to create 3D cellular or tissue structures (Fig. 1.4C).

The first attempts to print live cells using then inkjet

method was carried out using a modified commercially

available inkjet printer [8]. However, due to severe limita-

tions in that approach, special 3D printers were designed

to dispense cells and biological materials into a desired

pattern using droplets that were ejected via thermal or

piezoelectric processes. The main advantages of inkjet

printing is their high resolutions (5�50 μm), high cell via-

bility, high print speeds, and low costs. However, there

are problems too, including less control of droplet direc-

tionality, unreliable cell encapsulation due to the low vis-

cosity of the ink material, restrictions on the viscosities of

materials that can be used, and limitations of vertical

printing. Some examples of tissue fabrications using ink-

jet include full thickness skin models with pigmentation

[156], cardiac tissue with a beating cell response [157],

neural tissue [158], and a bone-like tissue [159].

Extrusion three-dimensional bioprinting

Extrusion-based bioprinting is focused on the printing of

biomaterials, cells, bioactive molecules, or combinations

thereof by extruding continuous cylindrical filaments

using pneumatic, piston-driven, or screw-assisted systems

(Fig. 1.4C). This technology supports precise deposition

of materials/cells and formation of complex 3D structures.

Extrusion-based bioprinted structures have better struc-

tural integrity compared to inkjet-printed structures and

can be used to form porous 3D scaffolds. The resolution

that can be achieved with extrusion-based systems are rel-

atively low as compared inkjet or laser-based systems, but

anatomically shaped structures can best be generated

using this technology. In the past several years, extrusion-

based 3D bioprinting has been receiving considerable

attention for creating artificial tissues or organs [160,161].

This technology has been supported by development of

new bioink materials that can mimic many features of

native ECMs while at the same time support cell adhe-

sion, proliferation, and differentiation [162,163].

Extrusion-based bioprinting systems (bioprinters) rely

on continuous dispensing of polymer and/or hydrogel fila-

ments through a micro-nozzle (about 25�300 μm or

larger pore diameter) and positioning them according to a

3D digital design file, via computer-controlled motion

either of the printing heads or collecting stage or both.

New technological advances in the past decade include

development of advanced extrusion 3D bioprinters, such

as the integrated tissue-organ printer (ITOP) at the Wake

Forest Institute for RM [160]. The ITOP used clinical

imaging data to print simple-to-complex human-scale tis-

sue constructs using biomaterials, cell-laden hydrogels

(bioinks), and a multinozzle extrusion system. Examples

of tissues printed and implanted in vivo include bone, car-

tilage, skeletal muscle, cardiac tissue, skin, liver, kidney,

bladder, lungs, and trachea. Another advancement was

printing of micro-channels within tissue constructs that

supported the diffusion of oxygen and nutrients to cells

within the construct. Although many challenges still

remain for 3D bioprinting of complex human organs, the

ability to print using multiple materials and cells simulta-

neously and create human-sized constructs represents a

significant progress in realizing the goal of TE. Another

example of an advanced 3D bioprinting system is the one

described by Liu et al. [164]. By combining seven

capillaries in a single print head, each of which is con-

nected to a different bioink reservoir, this bioprinter can

extrude multiple bioinks in a continuous manner. In addi-

tion, each capillary can be individually actuated and con-

trolled and fabrication of complex constructs is made

possible by fast and smooth switching among different

reservoirs. This 3D bioprinter addresses the limitations

associated with conventional multihead printers where

multimaterial printing can compromise fabrication speed,

complexity, or both. Although this system requires further

optimizations and validations, it is a good example of the

type of disruptive technology needed to advance in the

field of TE.

For creating human size tissues, extrusion-based 3D

bioprinting is the most suitable technique. The printing

material forms an important component of this strategy,

where they primarily provide cells with the right environ-

ment to proliferate, differentiate, and form tissues.

Therefore a rational bioink design approach for specific

applications will be crucial to the success of the bioprint-

ing strategy. New trends in bioinks for 3D bioprinting

include self-healing and shear-thinning hydrogels that are

based on supramolecular assembly of nanoparticles, small

molecules, or macromolecules. These materials have

unique rheology and gelation properties, which can be tai-

lored according to need and also the printing processes

[165]. Such materials have been used before as

injectable cell carriers and for cell encapsulation [166],

but their use to formulate bioinks is a recent development.
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Examples include a study by Li et al. who have described

a shear-thinning hydrogel based on a polypeptide�DNA

derivative [167]. Loo et al. have developed a peptide

bioink using hexapeptides that self-assemble into

stable nanofibrous hydrogels [168], while Schacht et al.

developed a shear-thinning bioink hydrogels using recom-

binant spider silk proteins [169]. To produce 3D-printed

cell-laden constructs, this spider silk proteins-based bioink

does not require any additional components, while at the

same time, it shows a good printing fidelity and cell com-

patibility. A hyaluronic acid (HA) bioink that crosslinks

through supramolecular assembly is described by Burdick

et al. [170]. This hydrogel displays shear-thinning and

self-healing properties, where the hydrogel flows due to

the shearing stress applied during the extrusion process,

while after printing it rapidly solidifies without any fur-

ther trigger. Further stability of these hydrogels can be

increased by introducing methacrylates into the HA

macromers, thereby allowing for printing of complex 3D

structures or perfusable channel patterns without using

any scaffolding materials. Further iterations to this HA

bioink include a dual-crosslinking hydrogel system, where

guest�host bonding was followed by photopolymeriza-

tion [171]. This new bioink formulation was also use to

print stable 3D structures without using any scaffolding

materials.

Use of polymeric hydrogels for 3D bioprinting has

attracted substantial attention in recent years due to their

tunable properties and structural similarities to native

ECM. Some of the polymers used to make hydrogels

include PEG, polyesters, poly(N-isopropyl acrylamide),

and polyphosphazenes [172]. The advantage of using syn-

thetic polymers for making bioinks is that their physico-

chemical properties are more controllable compared to

naturally derived polymers. Examples include bisilylated

PEG-based hydrogels that can crosslink through

Si�O�Si bond formation without need for any crosslink-

ing agents [173]; a photocrosslinkable acrylated PEG-

fibrinogen based bioink that can form hydrogel networks

through calcium-mediated ionotropic interactions and

then photo-crosslinked [174]. Similarly, Lorson et al.

have developed thermos-reversible supramolecular hydro-

gels and used them as bioinks [175]. Hybrid bioinks are a

new trend in 3D bioprinting, where a biocompatible poly-

mer is combined with a material that imparts unique prop-

erties to the bioink for a specific application. An example

is a hybrid bioink made from PU and graphene oxide

(GO), where the GO specifically supported the formation

of neural tissues [176].

Recently, researchers have been developing decellular-

ized ECM (dECM) as bioinks for 3D printing of tissue

and organ structures. Similar to the decellularized tissues,

the dECM-based bioinks can more accurately recapitulate

the biochemical microenvironments of the native tissue

ECM compared to just using biomaterials [177]. Studies

have shown that 3D-printed tissue made using dECM-

based bioink support better cell proliferation, differentia-

tion, maturation, and overall therapeutic effects in vivo

after transplantation [178]. Examples of use of dECM-

based bioinks for TE include fabrication of stem-

cell-laden cardiac tissue patches for the treatment of

myocardial infarction models [179] and hepatic tissue for

liver regeneration [180]. Research and development of

dECM-based bioinks are work in progress and it would

be interesting to see how further developments in this

direction can help create structurally and functionally

relevant tissues and organs.

Nanotechnology has been making its way into several

RM applications during the past decade [181]. Some of

these nanotechnologies have been used in the field of bio-

fabrication [182,183], such as in the nanocomposite

bioinks (nanoinks) with tailored properties for specific

applications. Examples include a bioactive DNA/HA-

coated single-wall carbon nanotube (CNT)-based nanoink

for printing two-dimensional (2D) and 3D flexible elec-

tronics [184]. Using a two-step process, 3D structures

with conductive patterns were printed on several supports,

including within hydrogels. Another example is the study

by Lind et al., who 3D printed “cardiac organs-on-chip”

using a combination of thermoplastic PU filled with car-

bon black nanoparticles (conductive inks) with other inks

[185]. The printed structures within then chip conferred

various properties such as biocompatibility, high conduc-

tance, and piezoresistivity. Jakus et al. used nanoinks

composed of poly(lactide-co-glycolide) (PLGA) and gra-

phene for printing 3D neuronal conduits that promote

neural regeneration [186]. In addition to biocompatibility,

neurogenic differentiation of the seeded human mesen-

chymal stem cells (hMSCs) was demonstrated on these

materials along with formation of axons and presynaptic-

like terminals.

Spheroids and organoids

It is now well-known that 2D cell culture environment

can make it difficult to control cell�cell and cell substrate

interactions in natural tissue, thereby presenting limita-

tions in recreating biological and physiological features of

human tissues and organs. To address this, researchers

have developed different types of 3D scaffolds using nat-

ural and synthetic polymers. Hydrogels have been one of

the most commonly used 3D scaffolds for cell culture and

TE due to their high water content, ECM like microstruc-

ture and biocompatibility [187,188]. However, use of sim-

ple hydrogels could not fully recreate the complex

microenvironment of many higher order tissues and

organs. One of the basic question being asked today in

TE is how precisely the physical, chemical, and biological
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properties (if applicable) of a 3D scaffold can support or

regulate cell function.

The regulation of the hydrogel environment is a prom-

ising method for controlling cellular behavior in three

dimensions. One example of such an approach is a study

by Caballero et al., who used a pattern with microgrooves

to engineer anisotropic fibroblast-derived matrices [189].

Fibroblasts seeded into this matrix showed in vivo�like

phenotype such as alignment, spreading, and migration.

In another study, Trappmann et al. devised a way to con-

trol the swelling of a dextran hydrogel by attaching a

methacrylate (a hydrophobic pendant group) to dextran

(the hydrophilic polymer chain in then hydrogel) and

found that the swelling of these hydrogels could be

reduced from 55% to 0% (no swelling) [190]. In addition,

insertion of a di-cysteine peptide sequence allowed for a

partial degradation of the hydrogel through cleavage by

MMP that also supported endothelial cell migration and

angiogenesis. Success of such approaches provides sup-

port to more innovations in 3D cell culture and tissue bio-

fabrication, all of which will be advancing then field of

TE in the coming years.

Among 3D culture systems, cellular spheroids have

been attracting more attention lately. These are 3D com-

plexes composed only of cells, where the spheroid is

formed based on the self-assembling tendencies of these

cells [191]. Cell spheroids offer several advantages over

2D cell cultures, including better cell�cell interactions

and diffusive mass transport. Therefore they can not only

be used for investigations of physiological and develop-

mental processes but also as building blocks for TE

(Fig. 1.5). For TE, spheroids of multiple cellular origins

can be combined or multiple cell types can be incorpo-

rated in a single spheroid using coculture. They are pro-

duced using a variety of devices such as microwell or

hanging drop plates. However, spheroids made this way

have features that are somewhat different from the struc-

ture of the native tissues. To address this, new ways of

spheroid generation are being explored. One example is

using phosphoproteins and glycoproteins to generate

supramolecular nanofibrils and then induce self-assembly

of fibroblasts [193]. Spheroids produced this way had a

more tissue-like form. In another study, fragmented nano-

fibers as a physical artificial support were injected into

the spheroids to control cell function [194]. In addition,

using this approach, the researchers could create larger

spheroids (B800-mm diameter) compared to the spher-

oids that were made only of cells. Another example of

spheroids application is for studying the physical stimuli

that may occur within tissues. Dolega et al. measured

mechanical stress within spheroids by injecting an ultra-

fine polyacrylamide microbeads as a pressure sensor

[195]; while Cho et al. made multicellular spheroids com-

posed of human brain vascular pericytes, primary human

astrocytes, and human brain microvascular endothelial

cells in agarose gel and used it for blood�brain barrier

studies [196].

Applications of cellular spheroids include cancer

research, disease modeling, and in vitro platforms for

drug/toxicity testing. Although spheroids have been

around for more than 10 years, their application for TE

has not been common. One reason is that they are primar-

ily used for mimicking microniches, plus the control of

spheroids during culturing has been an issue. Also, if a

spheroid is larger than a certain size, necrosis occurs in

the core, thereby reducing their usefulness for mimicking

structurally complex and multicellular tissues. However,

the regenerative potential and fusion capacity of these

spheroids can be improved by in vitro preconditioning or

by incorporation of biomaterial components. Fusing them

FIGURE 1.5 Use of cellular

spheroids, from studying basic bio-

logical processes to tissue engi-

neering. (A) Some of the

physiological and developmental

processes that can be investigated;

(B) improving the regenerative

potential and fusion capacity of

spheroids; (c) the two types of tis-

sue engineering strategies using

spheroids. Reprinted with permission

from Laschke MW, Menger MD.

Life is 3D: boosting spheroid func-

tion for tissue engineering. Trends

Biotechnol 2017;35(2):133�44.

doi: 10.1016/j.tibtech.2016.08.004.

r 2017 Elsevier Ltd. [192].
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together can generate scaffold-free macro-tissues, while

seeding them on scaffolds can generate in vivo�like engi-

neered tissues.

A more complex spheroid type are 3D tissue orga-

noids. An organoid is an extended cellular spheroid that

has a physicochemical environment very similar to the tis-

sue it is representing. The generation of organoids can be

considered as one of the major technological break-

throughs of the past decade. Organoids can be generated

using different cell sources (such as autologous cells, ES

cells, iPSCs) and self-organization or fabrication methods

(hanging drop plates, ultralow attachment plates, agarose-

coated plates, or ECM surface culture) (Fig. 1.6A and B).

Organoids can display various biological features seen

in vivo, such as tissue organization, regeneration,

responses to drugs, or damage. Examples of some of the

tissue-specific organoids that have been developed

include liver [200,201], lung [202], pancreas [203], pros-

trate [204], intestine [205], heart [206], brain [199]. The

development organoids representing the nervous system

had been a challenge so far. However, recently, Birey

et al. successfully fabricated human subpallium and

human cortical spheroids [207]. They showed that γ-ami-

nobutyric-acid-releasing (GABAergic) neurons could

migrate from the ventral to the dorsal forebrain and inte-

grate into cortical circuits. Success of such efforts provide

confidence that it is possible to create micro-tissues that

can more closely mimic structure and physiological

aspects of complex tissues.

3D bioprinting has become a popular way of creating

engineered tissues to be used both for studying the basic

tissue biology or pathology and for repair or regeneration

in vivo. A recent application of 3D bioprinted tissue is for

toxicity testing, drug screening, and development with the

aim of reducing or eliminating the use of animals for

these purposes. Many types of tissues are being 3D bio-

printed for in vitro use. One interesting example is a mul-

ticellular 3D hepatic tissue by Chen et al., who used

methacrylated gelatin (GelMA) and glycidyl methacry-

lated HA, with human iPSCs, adipose-derived stem cells

(ADSCs), and human umbilical vein endothelial cells

(HUVECs) as the bioink to print microscale hexagonal

architectures that mimicked the native hepatic microenvi-

ronment [208]. In addition to better morphological

FIGURE 1.6 Different cell sources and methods used to generate organoids. (A) Embryonic stem cells, keratinocyte-derived iPSCs, adult stem cells,

or even cells from tumors can be used to make tissue or disease-specific organoids; (B) generating organoids using different platforms; (C) photomi-

crograph of liver organoid stained with Calcein AM and Ethidium heterodimer (i), cardiac organoid stained with Calcein AM and ethidium heterodi-

mer (ii), and six cell types containing human brain cortex organoid stained with CD31 (iii). iPSCs, Induced pluripotent stem cells. Reprinted with

permission from (A) Pasca SP. The rise of three-dimensional human brain culture. Nature 2018;553:437�45. doi: 10.1038/nature25032. r2018

Springer Nature AG [197]; (C) (i and ii) Forsythe SD, Devarasetty M, Shupe T, Bishop C, Atala A, Soker S, et al. Environmental toxin screening

using human-derived 3D bioengineered liver and cardiac organoids. Front Public Health 2018; 6:103. doi: 10.3389/fpubh.2018.00103 [198] and (iii)

Nzou G, Wicks RT, Wicks EE, Seale SA, Sane CH, Chen A, et al. Human cortex spheroid with a functional blood brain barrier for high-throughput

neurotoxicity screening and disease modeling. Sci Rep 2018;8, Article number: 7413. for r2018 Springer Nature AG [199].
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electrostatically condensed into particles, termed poly-

plexes. Typically, an excess of the polycation is used dur-

ing polyplex formation, yielding particles with an overall

net positive charge. The positive surface charge of the

polyplexes increases interaction with negatively charged

cell membranes, a process that is likely mediated through

anionic, heparan sulfate proteoglycans anchored on the

cell surface [167]. This binding enhances their endocy-

totic cell uptake. Following endocytosis, these polyplexes

are capable of mediating endosomal escape through the

osmotic disruption (e.g., the proposed “proton sponge”

effect) [168].

Cationic polymers composed of secondary and tertiary

amines, which enable endolysosomal escape through the

proton sponge mechanism, can efficiently transfect

nucleic acids into cells [169]. Although these net cationic

polyplexes can effectively delivery nucleic acids in vitro,

they can cause cytotoxicity, and they have a limited bio-

distribution profile if delivered intravenously. This is

because the cationic surface charge of these polyplexes

FIGURE 29.7 Design and optimization of nonviral vehicles for gene delivery. (A) Several polycationic polymers for nanoparticle production are

shown including poly(B-amino esters), PEI, PAMAM dendrimers, and PDMAEMA. (B) Examples of polymers derived from natural components that

are used for nucleic acid delivery are shown. These include amino acid-based polymers such as poly(Lys), poly(His), and CPP-containing peptides

have been actively tested for delivery applications. Likewise, chitosan and polymers containing β-cylcodextrins and other carbohydrate-containing

polymers such as PGAAs have also shown tremendous potential. (C) Lipids traditionally studied for nucleic acid delivery include DOTMA and

DOTAP. (D) Recent progress has been made using high-throughput combinatorial approaches for identifying optimal siRNA delivery systems includ-

ing in vitro assay development or in vivo screening of carriers. Further rounds of optimization can be accomplished by statistical modeling to refine

the library or add further library diversification. CPPs, Cell-penetrating peptides; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DOTMA, N-

[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride; PAMAM, poly(amido amine); PDMAEMA, poly(2-(dimethylamino)ethyl methacry-

late); PEI, polyethylenimene; PGAAs, poly(glycoamidoamine)s; siRNA, small interfering RNA.
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providing a means for more complex tissue formation that

better mimics natural development [281]. Ionic interac-

tions can also be used to load lentivirus onto hydroxyapa-

tite NPs that protect the virus to enable incorporation into

hydrogels [282,283]. Lentivirus has also been immobi-

lized onto a variety of other materials with various prop-

erties that can be tailored for controlled gene transfer

in vitro and in vivo [284,285]. Viral vectors can also be

used to directly transduce cells in local pathologies

including articular cartilage, muscle, bone, and regenerat-

ing skin [286�288]. For example, a combinatorial therapy

of mesenchymal stem cells (MSCs) expressing CXCR4

and adenoviral delivery of BMP-2 and SDF-1α was able

to significantly improve bone regeneration in a mouse

critical defect model (Fig. 29.8A) [289]. A recent study

from the Belmonte lab used AAV as a gene delivery vec-

tor to reprogram cells in vivo to improve wound healing.

In this study, the authors delivered four transcription fac-

tors to reprogram mesenchymal cells into a more pluripo-

tent state which assisted epithelializing the wounds in

animal models. Four transcription factors (DNP63A,

GRHL2, TFAP2A, and MYC) delivered by AAV serotype

DJ were used to reprogram cells to improve wound

closure [290].

FIGURE 29.8 Promising preclinical data for tissue engineering includes viral and nonviral delivery. (A) MSCs transduced to overexpress

CXCR4 were implanted and Adenovirus delivering BMP-2 and SDF-1α was delivered showing improvements in bone formation in a critical defect

model. (B) Several approaches to heal skin wounds with nonviral delivery of siRNA have been developed. The first example used polymeric nanopar-

ticles loaded into a PEUR scaffold with siRNA targeting PHD2 to increase angiogenesis. MicroCT shows increase angiogenesis relative to the control

group. The second example used layer-by-layer deposition of siRNA to decrease MMP-9 expression and improve wound healing in a diabetic mouse

model. The last example shows the use of spherical nucleic acids to silence GM3 to improve wound healing in a diabetic mouse model showing more

rapid wound closure by 12 days. (C) Nonviral plasmid DNA delivery was used to regenerate bone in a mouse defect model. MicroCT images show

restored bone growth when both VEGF and BMP2 plasmids are delivered with nHA particles from a collagen scaffold. siRNA, Small interfering

RNA. Reprinted with permission from Curtin CM, et al. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF

and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater 2015;4,223�7, doi:10.1002/adhm.201400397; Nelson CE, et al. Tunable

delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv Mater 2014;26:607�14, 506, doi:10.1002/adma.201303520;

Castleberry SA, et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater 2016;28:1809�17,

doi:10.1002/adma.201503565; Randeria PS, et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglio-

side GM3 synthase knockdown. Proc Natl Acad Sci USA 2015;112:5573�8, doi:10.1073/pnas.1505951112.
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can be protected from the host immune system while reg-

ulating glucose metabolism on a minute-to-minute basis.

History of the bioartificial pancreas

The development of encapsulation technologies to immuno-

protect cells has a long history and dates back to 1933 [15].

In the groundbreaking publication of Bisceglie [15], tumor

cells were encapsulated and implanted in the peritoneal cav-

ity of pigs to follow the fate of the cells when free floating

in the device in the absence of vascularization (Fig. 36.1).

Bisceglie [15] applied amnion tissue to encapsulate the

cells. Already at that time it was recognized that these tis-

sues have semipermeable properties and some degree of

immunoprotection. The authors demonstrated prolonged

survival of the encapsulated tissue and therewith introduced

the concept of cell-encapsulation for prevention of graft

rejection. However, it took till 1950 when Algire et al. [16]

recognized the potential of the technology for the cure of

endocrine diseases. They [16] created artificial polymeric

diffusion chambers in which therapeutic cells were encapsu-

lated with the aim to create an immunoprotected microfac-

tory involving cells that release therapeutics upon demand.

The proof of principle was demonstrated but Algire et al.

[16] also demonstrated the importance of application of

fully biocompatible materials and the need for defining per-

meability properties. Since the 1980s numerous devices

have been published in different conformations with appli-

cations of many different polymeric biomaterials of differ-

ent compositions. It has let to testing of the devices in

many disorders where management of the disease needs a

minute-to-minute regulation of metabolism such as in

hemophilia B [17], anemia [18], dwarfism [19], kidney [20]

and liver failure [21], pituitary disorders [22], central

nervous system insufficiency [23], and diabetes mellitus

[24]. In the past two decades, important advances have

been made in the technology of cell-encapsulation. Many of

those studies focus on application in T1D as the disease is

affecting 1.25 million individuals in the United States alone

and is associated with $9.8 billion on health care cost [25].

These costs can be heavily reduced if a therapy is devel-

oped that tightly regulates glucose levels. Encapsulation of

cells is considered to be such an approach.

Replenishable cell sources and
encapsulation

During the past 5 years, encapsulation technologies have

received much attention by the scientific community. One

of the leading reasons for this is the advances in replen-

ishable insulin-producing cell sources (Fig. 36.2). In prin-

ciple, these cell sources provide an inexhaustible source

for insulin-producing cells for the large group of T1D

patients. As most encapsulated grafts still demonstrate

limited survival times such a replenishable cell source

may also allow replacement of the graft after cease of

function, which also may facilitate application of the tech-

nology in a wider group of patients.

Most of the replenishable cell sources are of allogeneic

or xenogeneic origin and require an encapsulation technology

to prevent rejection of the cells. There are several reports

demonstrating the usefulness of encapsulation for immuno-

protection of replenishable cell sources. Pagliuca et al. [26]

developed glucose-responsive stem cell�derived β cells that

in another study were encapsulated in alginate-based micro-

capsules and were implanted in T1D mice models, which

induced normoglycemia for up to 174 days [27]. The proto-

cols for maturation of human stem cell�derived β cells has

FIGURE 36.1 The concept of cell-

encapsulation for immunoprotection was

introduced as far back as in 1933. Bisceglie

[15] implanted tumor cells after encapsulation

in an amniotic sac into the peritoneal cavity

of pigs to study the behavior of the cells in

the absence of immunosuppression. Bisceglie

did not recognize the impact of this approach

for treatment of disease.
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improved tremendously and some matured cells have near

normal glucose-induced insulin release as early as 3 days

after transplant [28]. There are however also other replenish-

able cell sources in development in which encapsulation

might be helpful. For example, genome-editing technologies

might also lead to new insulin-producing cell sources [29].

Macro- or microedevices

Currently there are three categories of devices under

development for immunoprotection of insulin-producing

cells: intravascular macrocapsules, extravascular macro-

capsules, and extravascular microcapsules [30�32]

(Fig. 36.3). All approaches have their pros and cons as

will be discussed in the next section.

In intravascular devices, groups of islets are enveloped

in relatively large diffusion chambers that protect the cells

from the effector arm of the immune system. Intravascular

devices are connected to the recipient’s vascular system by

anastomosis in most cases as arteriovenous shunt [33,34].

An advantage of intravascular devices is the fast exchange

of nutrients, glucose, and insulin, which make a near

FIGURE 36.2 Replenishable

insulin producing cell sources such

as cells obtained from embryonic

stem cell sources are either from

allogeneic or even xenogeneic ori-

gin. To prevent graft rejection

immunoisolation by encapsulation

might be necessary.

FIGURE 36.3 The bioartificial pancreas

exist in three concepts. The intravascular

macrocapsules, which allow fast exchange of

glucose and insulin due to direct vascular

access. The extravascular macrocapsules

which can be implanted in the peritoneal cav-

ity or under the skin and the extravascular

microcapsules with an optimal volume to sur-

face ratio that usually are implanted in the

peritoneal cavity.
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[138]. The cystectomy-only and nonseeded controls main-

tained average capacities of 22% and 46% of preoperative

values, respectively. Average bladder capacity of 95% of

the original precystectomy volume was achieved in the

cell-seeded tissue-engineered bladder replacements; how-

ever, the subtotal cystectomy reservoirs that were not

reconstructed and the polymer-only reconstructed bladders

showed a marked decrease in bladder compliance (10%

and 42% of total compliance, respectively). The compli-

ance of the cell-seeded tissue-engineered bladders was

almost no different from preoperative values (106%).

Histologically, the nonseeded scaffold bladders presented

a pattern of normal UCs with a thickened submucosal

fibrotic and a thin layer of muscle fibers. The retrieved

tissue-engineered bladders showed normal cellular organi-

zation, consisting of a trilayer of urothelium, submucosa,

and muscle [138], indicating the benefit of cell-seeded tis-

sue engineering technology in the bladder reconstruction,

compared to nonseeded tissue-engineered bladder.

For urethral reconstruction, many surgical procedures,

such as autografting to replace damaged areas of the male

urethra, may eventually fail. Various strategies have been

proposed over the years for the regeneration of urethral

tissue in several animal models, including woven meshes

of synthetic polymers such as PGA without cells

[144,145] and with cells [7], naturally derived collagen-

based materials such as decellularized bladder submucosa

[106], acellular urethral submucosa [146], and small intes-

tine submucosa [124].

Clinical studies

A clinical experience involving engineered bladder tissue

for cystoplasty reconstruction was conducted starting in

1998. A small pilot study of seven patients was reported

[5], using a collagen scaffold seeded with cells with or

without omental coverage or a combined PGA�collagen

scaffold seeded with cells and omental coverage. The

patients reconstructed with the engineered bladder tissue

created with the PGA�collagen cell-seeded scaffolds

showed increased compliance, decreased end-filling pres-

sures, increased capacities, and longer dry periods over

time [5]. It is clear from this experience that the engi-

neered bladders continued their improvement with time,

mirroring their continued development. Although this

report was promising in terms of showing that engineered

tissues can be implanted safely, it is just a start in terms

of accomplishing the goal of engineering fully functional

FIGURE 46.1 Image-guided tissue-engineered

reconstruction of a massive mandibular defect. (A)

The region of interest (jaw) is imaged using 3D CT.

(B) The CT data are then fed to CAD software to gen-

erate an idealized virtual replacement of the missing

parts of the mandible. (C) A titanium mesh is then

formed in the shape of the missing bone model and

augmented with BioOss hydroxyapatite blocks, OP-1

collagen implant, rhBMP-7, and autologous bone

marrow aspirate. (D) The engineered mandibular graft

is implanted in a heterotopic muscular pouch in the

patient to establish vascularization and initial osteo-

genesis. (E) The graft was finally implanted orthoto-

pically to reconstruct the mandibular defect. The

patient had functional mastication and satisfactory

esthetic outcome. 3D, Three-dimensional; CAD,

computer-aided design; CT, computed tomography.

Reproduced with permission from Warnke et al.

(2004).
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derived from porcine, lapine, or rodent tissues may be

largely notochordal. Further, the notochordal or mesen-

chymal original of cells from canine sources is known to

vary by breed. These phenotypic differences add an addi-

tional and unique complicating factor for investigators

studying preclinical models for IVD tissue regeneration.

Given the very limited availability of native IVD cells

that can be effectively harvested for tissue engineering,

there has been an interest in using other cells as sources

for these efforts. The primary target for other sources has

been stem cells derived from sources such as bone mar-

row [110], embryonic cell lines [111], and adipose tissue

[112]. A major challenge in this approach has been the

development of methods to guide the development of

stem cells toward phenotypes found in the IVD (see the

next section). This has been attempted through manipula-

tion of the culture medium and gas conditions [113], as

well as coculture with primary cells from the IVD

[114,115]. The more recent development of induced

pluripotent stem cells has also provided the possibility for

an additional cell source for cell delivery to treat muscu-

loskeletal disorders [116]. In comparison to the use of

adult primary disk cells derived from often pathological

or degenerated IVDs, the use of autologous mesenchymal

stem cells (MSCs) or progenitor cells may be most prom-

ising to the future of ex vivo tissue-engineering strategies

that rely upon cell supplementation.

Cell therapy preclinical studies

If the local environment within the IVD is conducive to

the survival of cells, direct cell supplementation without

biomaterial scaffolds may hold promise for IVD repair.

This strategy has been pursued by several groups preclini-

cally and clinically, using either IVD cells, chondrocyte-

like cells, or progenitor cells.

FIGURE 51.7 Anatomical composite TE-IVD, designed from MRI and CT, survives in disk space for 6 months.

(A) CT and MRI design procedure for obtaining TE-IVD dimensions. (B) Fabrication of TE-IVD. (I) NP dimensions used to design injection molds

via computer-aided design. (II) Injection mold 3-D printed out of acrylonitrile butadiene styrene plastic. (III) Cell-seeded alginate was injected into

mold, removed, (IV) placed in center of 24 well plate, and cell-seeded collagen was poured around alginate NP. (V) After 2 weeks of culture, cell-

seeded collagen contracts around the NP to form composite TE-IVD. (C) Intraoperative images showing exposed caudal 3/4 disk space and implanted

TE-IVD. (D) T2-weighted MRI of implanted disk space (marked by yellow arrows) and adjacent native levels immediately postoperative, at 1 month,

and 6 months after implantation. (E) History of TE-IVD in native disk space. Intraoperative photo showing explanted native IVD next to the TE-IVD

(day 0) that was implanted in its place and TE-IVD after being implanted into native disk space for 6 months. (F) Size of engineered IVD compared

to native IVD. Measurements were taken along the lateral and ventral�dorsal planes of the engineered and native IVD. Engineered IVD measurements

were taken at day 0 prior to implantation (n5 12) and compared to explanted native disks (n5 12). Engineered IVD measurements were also taken

after 6 months of implantation (n5 12). IVD, Intervertebral disk; MRI, magnetic resonance imaging; NP, nucleus pulposus; TE, tissue-engineered.

Reprinted with permission from Bowles, et al. PNAS 2011.
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Biofabrication of cartilage tissue

Magnetic resonance imaging and computerized

tomography scans

Biofabrication of cartilage tissue requires a detailed

knowledge of underlying anatomy. Three-dimensional

(3D) graphics of cartilage can be generated through

anatomical specimens by MRI scans, which later can

be used in 3D printing of the scaffolds. Fig. 53.1 shows

3D graphics of cartilage generated from laser-scanning

technology. High-resolution MRI is an emerging tech-

nology that is gradually being introduced into the clini-

cal practice, and it enhances the resolution and

sensitivity rate considerably [39,40]. X-ray and CT

scans produce low value information as they do not

capture cartilage, although they can show bone anat-

omy. It is essential to quantify both the thickness and

the volume of the cartilage as it varies between ana-

tomical areas. Substantial progress has been recently

achieved in enhancing the imaging of cartilage physiol-

ogy and detecting changes in proteoglycan content and

collagen ultrastructure [37]. Another way to obtain a

3D model of the cartilage is by producing a 3D coordi-

nate frame. Coordinate measuring machines can be

used where a probe meets the sample, and the 3D coor-

dinates are recorded. This technology has the capacity

to capture the surface anatomy with a resolution of

1 μm. However, it cannot distinguish between tissues or

provide information of the composition of multilayered

tissues.

Scaffolds for cartilage tissue engineering

Scaffold-free fabrication of cartilage allows cartilage tis-

sues to be grown in the lab and subsequently implanted to

the area that needs to be treated [41]. Here, silicone molds

are used to form petri dish, upon which the chondrocytes

could grow. The agarose solution is poured on the silicone

molds, which results in the micro-molded nonadhesive aga-

rose hydrogel. The cell suspension is carefully implanted

into spherical chambers at the bottom. After 18 hours, the

cell suspensions coalesce and turn into spheroids that are

then implanted into the body.

Hybrid scaffolds can be printed using digital light pro-

cessing (DLP), a new water-based 3D printing method

using photosensitive hybrid polymers such as polyure-

thane with HA [42]. The hybrid materials have high

printing resolution and have shown nontoxic properties

toward attached cells. In addition, 3D printed constructs

promote good cell adhesion and could be customized for

cartilage tissue reconstruction. Fig. 53.2 explains the

fabrication of the cartilage tissue and its clinical applica-

tion for cartilage repair. The key factor in 3D printing by

using a DLP printer is the viscosity of the material,

which affects the printing resolution and accuracy. The

mixture of the resin is stirred at high speed while the

material is heated to remove water. Photo-initiators and

poly(2-hydroxyethylmethacrylate) are added to aid in the

light curing, which results in a customizable print where

the shape has an error of only 4% varying from the origi-

nal design (Fig. 53.2A). Moreover, this customized hybrid

scaffold shows high cytocompatibility with excellent

FIGURE 53.1 (A) Laser scanning and (B) physical

marker probing of knee specimen [40]. (C) Laser scanner

image of cartilage [41].
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efficiency and convenience, inkjet printing has limited

popularity compared with extrusion-based printers. In

addition, the viscosity of available bioinks is not as

diverse as in extrusion printers. Inkjet-based printing is a

noncontact printing technique in which droplets of dilute

solutions are dispensed, driven by thermal, piezoelectric,

or microvalve processes.

SLA is a technology to use light with a specific wave-

length to polymerize molecular chains and/or to make

crosslinks to form polymer networks (Fig. 54.9). After

polymerization and cross-linking the formed bulk system

will not be dissolvable in water. Noncross-linked portions

will be sacrificial layers that can be washed away in water

or other solvents, while the remaining material will be

printed in desired patterns. In general, bioink precursors

have double bonds (e.g., vinyl), which can be activated

for free-radical polymerization by light (e.g., wavelength

of 365 nm). One majorly used and verified safe initiator

is Irgacure2959 (Ciba), while some commonly used

bioinks are acrylate-carried biomaterials (e.g., PEG, gela-

tin, chitosan, F127, acrylic acid, and acrylic amide) and

methacrylate (MA) derivatives, etc.

Developed decades ago, laser-induced forward transfer

(LIFT) can be used in 3D printing with high-resolution

deposition of bioink. Pulsed-laser evaporation for direct

writing has been used for cell printing. The mechanism is

based on high powerful pulse laser and two glass slides,

with one as energy absorption and the other containing

cells. LIFT has high resolution but is also with high cost.

Bioink inspired from ligament and tendon
structures

A tendon is composed of toughly packing self-assembled

and paralleled multiscaled collagen fibers. This connec-

tive tissue bridges muscle to bone to sustain cyclic

mechanical loadings of tension, compression, torsion, and

shear. Similar to tendons in mechanics, ligament connects

bone to bone. 3D bioprinting tissue could be used as a

model to study musculoskeletal related disease and to

screen drug molecules. Gelatin-MA was printed on a

microplate for musculoskeletal tendon�like tissues on

postholder cell culture inserts in 24-well plates. Human

primary skeletal muscle cells and rat tenocytes were

cocultured around the posts. Different printing patterns

were used to demonstrate related gene and protein expres-

sions, which could be used as a screening platform [114].

ACL is commonly reconstructed with tendon grafts fol-

lowing injury. Tissue-engineered implants can be printed

in a thin-walled cylindrical mesh (Fig. 54.10), which can

be used to enhance the strength for ACL reconstruction as

an internal brace. The printing ink was composed of PCL,

poly(lactic-co-glycolic acid) (PLGA), and β-TCP (trical-

cium phosphate) under a pneumatic pressure of 500 kPa

for deposition [115]. However, the integration between

implant and bone had potential complication due to insuf-

ficient bone filling. Thus in a subsequent study, 3D

printed cylindrical mesh was coated with recombinant

human BMP 2 (rhBMP-2) with poly(propylene fumarate)

as bioink; results demonstrated significantly increased

pullout strength [116].

Until now, for 3D printed functional ligament and ten-

don, the research mostly focused on using thermal plastic

polymers (such as PCL, PLA, and PLGA), natural hydro-

gels (such as gelatin, chitosan, alginate, and fibrin) and

some ceramic materials (such as hydroxyapatite and

β-TCP). In general, plastics and ceramics contribute to

stiff phase and hydrogels contribute to soft phase.

Meanwhile, cells and therapeutic agents can be added

inside. However, a tough but flexible structure is able to

mick ligament and tendon is still a challenge. For 3D

printing ligament and tendon, the key is about how to

deposit bioink with toughness, mimetic structures, and

FIGURE 54.8 SLA printed high-resolution microneedles.

FIGURE 54.9 Inkjet printed graphene oxide�gelatin pattern with

high-resolution finer line inside (right:under microscopy).
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formulated as a topical gel, chitosan was shown to con-

form well to the shape of a transection injury [183,184]

and to mediate secondary injury mechanisms, including

suppression of reactive oxygen species [185]. Neural pro-

genitor cells survived subcutaneous transplantation and

differentiated within a chitosan gel [186], and MSCs were

encapsulated and delivered into a complete transection for

their paracrine activity and immunomodulation [63].

When chitosan was fabricated as a conduit, transplanted

NSCs differentiated into astrocytic and oligodendrocyte

lineages in the spinal cord to form regenerated tissue

bridges [187,188]. These studies subsequently led to the

key observation that a biomaterial could modify the distal

and proximal stumps of a severe transection injury by

inducing the alignment of endogenous radial glial cells

for axonal guidance into the conduit [189].

Chitosan has proven to be a particularly versatile

material for polymer-mediated delivery of molecular ther-

apeutics, including modification as a carrier for PLGA

microspheres eluting protein [190], and for neurotrophic

factor elution to induce stem cell differentiation

[191,192]. Recently, a chitosan conduit that eluted NT-3

provided for robust migration of endogenous neural pro-

genitor cells from the adjacent cord into the lesion area,

along with their differentiation into neural networks of

ascending and descending tracts [193]. The findings of

this key study, that endogenous neurogenesis could be eli-

cited by the biomaterial, were then robustly validated in a

second study, confirming anatomic bridging of neural tis-

sue, locomotor recovery, and partial restoration of motor

and sensory evoked potentials [194] (Fig. 58.13). Other

investigators have used chitosan for exogenous neural

progenitor cell delivery and differentiation aided in part

by cyclic adenosine monophosphate (cAMP) elution from

PLGA microspheres embedded within the conduit

[186,195,196] (Fig. 58.14). Reformulations of chitosan as

hydrogels and sponges have been successful in encapsu-

lating MSCs as a source of paracrine trophic factor sup-

port [63,197] and as a reservoir of OPCs for axonal

remyelination after injury [198]. A large animal primate

study bridged a 1 cm thoracic cord hemitransection with

an NT-3 eluting chitosan conduit, demonstrating motor

and sensory functional recovery in addition to electro-

physiologic and magnetic resonance imaging improve-

ments with neural regeneration [199]. For molecular

therapies, microglial activity has been targeted with small

inhibitory RNA [200] and microRNA-based strategies

[201] by eluting from chitosan nanoparticles.

Natural silk fibroin, including Tussah silkworm silk,

Antheraea pernyi silkworm and Bombyx mori silkmoth

fibers [252], have been used in biomaterial scaffolds for

SCI repair as copolymer systems [202]. Silk fibers

FIGURE 58.13 Validation study of NT-3 releasing chitosan scaffolds. Chitosan tubes filled with NT-3 releasing chitosan carriers were implanted

into a 5 mm long segmental transection injury. Gross morphology demonstrated differing appearances of tissue cables after 3 months across the tran-

section gap in animal receiving NT-3 scaffolds (A�D) and animals without implants (E�G). Longitudinal immunohistochemistry identified neural tis-

sue with nestin, Tuj-1, and NeuN positive cells within the NT-3 supported tissue bridging. This key validation study indicated that NT-3 releasing

scaffolds could facilitate neural regeneration by eliciting endogenous neurogenesis. Asterisks denote residual chitosan NT-3 carrier; number signs

denote open cysts in control animals. NT-3, Neurotrophin-3. From Oudega M, Hao P, Shang J, Haggerty AE, Wang Z, Sun J, et al. Validation study

of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp Neurol

2019;312:51�62, with permission.
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provide bioactive cues by means of structural tripeptide

repeats. The use of silk in animal models of injury follows

several years of in vitro characterization, to define the

extent to which fibers could support longitudinal neurite

outgrowth [253], and determine how cells might behave

on the fiber surface [254]. The guidance of migrating

olfactory ensheathing cells [255�257] and differentiation

of stem cells [258] have been of particular interest. Silk

may also be used by dissolving fibers in aqueous

solution and conforming against a shaped surface for

freeze�drying. Combinations of silk fibers with alginate

microspheres for GDNF [203] or NGF release [204] by

seeded MSCs enhanced the sparing of spinal cord tissue

and improved the number of surviving neurons. Silk

fiber matrices themselves can incorporate growth factors

as they form in aqueous solution and may be applied as

bioactive films onto the surfaces of other polymers.

Sustained release of NT-3 from silk films lining a con-

duit of the synthetic polymer poly-ε-caprolactone (PCL)

filled with NSCs yielded improved stem cell survival

and rates of differentiation, axonal ingrowth, and func-

tional outcomes after transplantation in a complete tran-

section injury [205]. When recombinant analogs of the

spider dragline silk spidroins were electrospun as a

copolymer with PCL, the addition of neural progenitor

cells promoted neural tissue ingrowth along parallel silk

microfibrils, and neurogenesis from stem cell differentiation

[206].

FIGURE 58.14 Chitosan scaffolds and stem cell transplantation. A chitosan conduit facilitated spinal cord tissue bridging, NSPC survival, and

locomotor behavioral improvement over time. (A) Photographs of the surgical implantation of chitosan channels filled with fibrin and NSPCs also

demonstrate (B) the formation of tissue bridges in completely transected animals 2 weeks after implantation. (C and D) Longitudinal section of the tis-

sue bridge confirmed NSPC survival after 6 weeks in an animal receiving cells that were pretreated for 4 days with dbcAMP (dbcAMP, 4div).

(E) NSPC survival after 2 and 6 weeks is represented for various treatment groups, comparing pretreatment with NSPCs transplanted in the presence

of blank (untreated) or dbcAMP-releasing MS embedded into the scaffold wall after 1 day (1div) of incubation. (F) Assessment of functional recovery

was performed according to the BBB locomotor scale. After 6 weeks, rats receiving transplants of dbcAMP-pretreated NSPCs show a statistically sig-

nificant increases in hindlimb function relative to untreated animals. BBB, Basso, Beattie, and Bresnahan; dbcAMP, dibutyryl cyclic adenosine mono-

phosphate; MS, microspheres; NSPC, neural stem/progenitor cell. From Kim H, Zahir T, Tator CH, Shoichet MS. Effects of dibutyryl cyclic-AMP on

survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PLoS One 2011;6(6):e21744, with

permission.
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absorption of scattered light, ion and fluid transport, and

phagocytosis of shed photoreceptor outer segments [5].

Tight junctions between individual RPE cells help form a

barrier that works in concert with the blood retinal barrier

to maintain the immune privileged status of the eye and

regulate ionic exchanges between the circulation and ret-

ina. The RPE may also play a more active role in suppres-

sing the immune responses in the eye. It has been found

that RPE cells can suppress T-cell activation by altering

expression of T-cell activation markers such as CD69 and

CD25, and secretion of IL-10, induce a regulatory T-cell

phenotype, and trigger T-cell apoptosis [6�9].

As the main light-sensing cell type within the retina,

photoreceptors traverse the next three retinal layers in a

highly polarized fashion. The outer and inner segments of

rods and cone-shaped photoreceptors about the RPE and

form the rod/cone layer. The outer limiting membrane

(OLM), comprising adherens junctions between photore-

ceptors and supporting Müller glia, comes next and pro-

vides structural support as well as a barrier function for

the retina. The outer nuclear layer (ONL) contains photo-

receptor nuclei and is located on the other side of the

OLM followed by the outer plexiform layer (OPL), which

contains photoreceptor synaptic bodies [10] (Fig. 62.1).

There are about 120 million rods and 6 million cones in

the human retina, with cones being highly concentrated in

the macula, or center of the retina to provide central

vision [10]. Within the macula, the fovea is a pit-like

structure that contains the highest density of cones, which

thereby provides the highest resolution visual acuity.

Cones are responsible for vision and color discrimination

in well-lit environments. Subtypes are classified by the

absorption spectra of the light-sensitive opsin protein they

contain: L cones respond to long (red) wavelengths of

light, M cones respond to medium (green) wavelengths,

and S forms respond to short (UV/violet or blue) wave-

lengths. Rods, on the other hand, are excluded from the

macula and reside throughout the periphery of the retina.

They contain rhodopsin that is extremely efficient at

absorbing green to blue wavelengths of light to provide

vision in dimly lit environments [11]. The outer segments

of both rods and cones capture photons of light through

ordered stacks of opsin-containing disks while the inner

segments contain mitochondria to produce ATP needed to

regulate ion channels.

Through a process known as visual phototransduction,

captured light triggers the dissociation of retinal mole-

cules from opsin proteins in rods and cones followed by

ion channel closing, subsequent photoreceptor hyperpolar-

ization, and inhibition of glutamate release from the syn-

aptic region of the cells. In the dark, glutamate is received

by bipolar and horizontal cells and inhibits their activity.

In the light, the lack of glutamate relieves the inhibition

of these retinal neurons, leading to their activation.

Bipolar cells then amplify and transmit the electrical sig-

nal downstream to amacrine cells through interplay

among various ON and OFF bipolar subtypes. Horizontal

cells help fine-tune this signal and provide feedback to

photoreceptors. Nuclei of all three classes of secondary

neurons, bipolar, horizontal, and amacrine cells, reside

within the inner nuclear layer (INL) while their processes

either extend distally to the OPL (bipolar and horizontal)

or proximally to the inner plexiform layer (IPL) as in the

case of amacrine cells (Fig. 62.1). The IPL is where most

FIGURE 62.1 The eye and the cellular layers of the retina.
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FIGURE 64.1 Drawings of histological sections of mammalian first-molar-tooth development, from the epithelial thickening stage (A) through to

the late bell, stage (E).

FIGURE 64.2 Diagrammatic representation of two

methods currently being explored for producing bio-

logical tooth replacement. Figure kindly drawn by

Rachel Sartaj.



relationships and malocclusion [3]. In advanced forms of

disease, replacement of both cartilage and bone as a total

joint reconstruction maybe necessary to restore function

or skeletal support to the mandible.

Maxillofacial trauma constitutes another group of con-

ditions providing opportunities for TE reconstruction.

Whereas most forms of blunt trauma result in fractures

where tissue loss is minimal, penetrating injuries pro-

duced by high velocity missiles and projectiles often

create significant loss of bone and overlying soft tissue

(Fig. 65.3). Finally, consideration should be given to the

various forms of congenital facial clefts that commonly

affect the oral and maxillofacial region. In a limited form,

failure of the maxillary processes to fuse unilaterally or

bilaterally produces alveolar clefts (Fig. 65.4). When the

upper lip, maxilla, and palate are involved, a constellation

of deformities associated with unilateral or bilateral cleft

lip and palate patients is present.

In the reconstruction of anatomical defects, the causa-

tive events must be taken into account to ensure

long-term success. Defects produced by traumatic, devel-

opmental, and pathological conditions are associated with

a defined end point. Assuming that pathology has been

completely eradicated or further traumatic insults do not

occur, defects produced by these mechanisms can be fully

characterized with respect to size and missing tissue

types. In contrast, tissue loss as a result of parafunctional

habits, nonphysiological loading patterns, and immuno-

logically mediated degeneration often continues following

reconstruction. This set of circumstances will adversely

affect any biological constructs produced by TE techni-

ques and impose an important limitation on the clinical

application of their usage. Before biological, rather than

alloplastic materials can be employed, correction of the

underlying etiology is of paramount importance.

A special concern in oral and maxillofacial reconstruc-

tion is the potential exposure of grafted tissue to the exter-

nal environment. Constructs used to restore defects

involving the jaws, orbits, nose, and ears are potentially

in direct contact with the mouth, sinuses (maxillary, eth-

moidal, and frontal), nasal passages, and external environ-

ment (Picture 65.5). These areas are characterized by high

PICTURE 65.3 Squamous cell carcinoma of the

floor of the mouth and tongue requiring composite

resection of involved structures.

PICTURE 65.4 Self-inflicted gunshot wound with avulsive injury to

both the maxilla and mandible.
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the graft. Vascularized grafts are harvested from a limited

number of anatomical sites characterized by a dominant

arterial supply—venous drainage system. In addition, the

en bloc harvesting of the graft must not compromise

either the function of the donor site or the vascular and

neural supply of structures distal to the harvest.

Commonly used donor sites that meet these requirements

include the fibula, ilium, scapula, and distal radius.

Vascularized grafts transplanted to mandibular defects are

anastomosed to patent vessels adjacent to the mandible,

such as the facial, lingual or superior thyroid arteries, and

veins. This reconstructive approach is highly technique-

sensitive and while experienced microvascular surgeons

achieve successful outcomes in over 90% of cases, less

experienced surgeons or patients with underlying vascular

disease (e.g., diabetes) enjoy less success (Pictures

65.7�65.10).

Mandibular defects can also be reconstructed using

nonvascularized transplantations of autologous bone from

various sites. Successful bone grafts rely upon adequate

cellularity and a sufficiently cellular and vascular

recipient bed. When the soft tissue bed is deficient or

lacks a decent blood supply, an addition of well-

vascularized soft tissue is achieved by the rotation of a

muscle flap (with or without skin) into the mandibular

defect. The pectoralis major, latissimus dorsi, and delto-

pectoral flaps have all been described for this purpose.

The bony reconstruction is delayed for a period of 3�6

months until the soft tissue flap has healed. In patients,

whose soft tissue is adequate but avascular as a result of

radiation therapy, hyperbaric oxygen therapy can improve

the quality of the vascular supply in a course of treat-

ments lasting between 4 and 6 weeks, where repeated

exposures to pressurized room air promote tissue angio-

genesis. This process adds both time and considerable

expense to the reconstructive process but has been shown

to be effective in improving the quality of the recipient

bed. Once the soft tissue in a mandibular defect has been

optimized with respect to quantity, cellularity, and vascu-

larity, autologous bone is transferred from a donor site

and molded to fit the dimensions of the defect. The bone

graft can be retained with screws fixed to a rigid bone

plate or held in position with the aid of cribs fashioned

FIGURE 65.5 (A) Patient following a

right maxillectomy for removal of a

benign odontogenic neoplasm. Defect has

filled in with fibrous tissue stimulated by

grafting the site with an allogeneic dermal

matrix. (B): Stereolithographic model of

the same patient demonstrating the extent

of the maxillary hard tissue defect.

PICTURE 65.6 Placement of avascular bone graft in an infection-free

bed via trans-cervical neck incision.

PICTURE 65.7 Massive squamous cell carcinoma of the lower lip.

1206 PART | SEVENTEEN Nervous System



delivery vectors have been used for bone regeneration in

cranial defect animal models, compromises must be made

with each. Adenoviral constructs have commonly been

used as viral vectors to transfect craniofacial tissues and

have the advantage of efficiently transfecting both repli-

cating and quiescent cells [46]. In addition, adenoviruses

are easily manipulated, can be produced in high titers,

and large amounts of genetic information can be inserted

into them. However, concerns related to viral vectors

include in vivo homologous recombination and the possi-

bility of an immune response from the expression of viral

antigens on the surfaces of transfected cells. These con-

cerns have led to the development of nonviral vector

agents [42].

While numerous nonviral gene delivery systems exist,

a common problem is their low in vivo transfer efficiency

[46]. Nonetheless, such systems are able to deliver much

larger genes with minimal immunogenicity. One promis-

ing modality of nonviral gene delivery for craniofacial

applications is the use of cationic liposomes which have

been used to regenerate cranial bone defects in rabbits by

delivering BMP-2 plasmid cDNA [47]. The low transfec-

tion efficiency of uncondensed, naked plasmid DNA has

also been addressed by the use of the cationic macromer

poly(ethylene imine), which has been used to condense

BMP-4 plasmid DNA and deliver it in a sustained and

localized manner from poly(lactic-co-glycolic acid) scaf-

folds within critical size cranial defects [45].

Gene transfection can take place directly within the

defect site by releasing the delivery vector in vivo from

the TE scaffold [43,44]. Indirect delivery methods have

also been described using a target cell population har-

vested from the patient, performing in vitro transfection

of the cells, and then reimplanting the transfected cells

into the defect along with the TE scaffold material [48].

While the direct technique may be simpler, it has a lower

transfection efficiency and target cells in a nonspecific

manner [27]. The indirect ex vivo approach, on the other

hand, requires additional harvesting and culturing proce-

dures but avoids the risks associated with placing viral

vectors directly into the patient and disturbing the host

genome. Ex vivo�transfected cells are not immunologi-

cally privileged and may still express viral antigens on

their surface which can lead to a host response following

implantation.

As a corollary to gold standard approaches where

bone grafts and flaps include the donor site cells, some

TE approaches to craniofacial reconstruction employ cell-

seeded scaffolds as implants. These have potential bene-

fits for regenerating tissues in large defects or those with

compromised healing capacity, such as those affected by

radiation therapy [8]. The majority of cell-seeded scaf-

folds have investigated mesenchymal stem cells (MSCs)

or ASCs. Reviews have covered some of the works in

these areas looking at various stem cell sources, delivery,

and other parameters such as in vitro expansion and

PICTURE 65.14 (A, B, and C)

Hybrid combination of radial forearm

osteocutaneous vascularized flap for

intraoral soft tissue coverage (A) with

rhBMP-21 bone marrow aspirate con-

centrate1 allogeneic bone graft (B).

Panoramic radiograph showing excel-

lent regeneration of bone 8 months out

(C). Patient is ready for dental

implants. rhBMP-2, Recombinant

human BMP-2.
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to products of porcine or bovine origin and inflammatory

arthritis including RA.

Surgical steps

The first step of the surgical procedure is the strict exami-

nation of the knee joint, which needs to be performed

arthroscopically in analogy to the current international

recommendations. If the indication for ACI is confirmed

intraoperatively, the arthroscopic procedure for the biopsy

of cartilaginous tissue can directly follow. The most com-

mon method is the removal of three defined narrow osteo-

chondral cylinders using small hollow punches from

regions of normal cartilage. The superolateral or supero-

medial trochlea and the superior border of the intercondy-

lar fossa are suitable locations. By definition, this

removal process represents the first step in the manufac-

ture of a drug within the context of “ATMP” and is thus

subject to regulation. Such regulation includes a standard-

ized collection process for the removal of cartilage, the

examination of the donor suitability, careful documenta-

tion of the biopsy process, regular instructions of the

responsible persons, and fulfillment of structural and

hygienic conditions, together with documentation and fil-

ing of all documents for 30 years after collection.

After submitting the osteochondral cylinders in cell cul-

ture medium to an approved laboratory by express deliv-

ery, the enzymatic digestion of the cartilage which has

been separated from the subchondral bone and the primary

monolayer culture of the isolated articular chondrocytes in

a clean room laboratory are carried out. Subsequently, the

monolayer expansion of the chondrocytes takes place in

the context of a standardized proprietary expansion proto-

col of the cooperating company and the production of the

final product. This period varies depending on the manu-

facturer between about 3 and 8 weeks. It is not influenced

by the surgical demands, solely depending on the

manufacturing process. The possibility of an interim cryo-

preservation of the chondrocytes makes it possible to adapt

the time of transplantation to the needs of the patient. This

option is offered by most commercial ACI suppliers.

Following cell expansion, chondrocytes are seeded

into the biomaterial scaffold, which will be implanted in

most cases. This is performed either in the laboratory

some days before implantation or a cell suspension is

being delivered directly to the operation theater where the

suspended chondrocytes are seeded into the biomaterial

immediately before implantation. As an alternative, 3D

spherical aggregates of chondrocytes obtained in a similar

fashion may be implanted without the use of a scaffold

into defects.

Implantation of the ACI product may be performed as

open surgery (arthrotomy) or arthroscopically, chiefly

depending on the type of product (Fig. 80.1). In most

cases, an arthrotomy is needed. A meticulous surgical

technique has to be applied. After defect identification,

the careful debridement of the diseased cartilage tissue

represents the first surgical step. In contrast to marrow-

stimulation techniques, the integrity of the subchondral

bone plate is preserved. During debridement, all diseased

cartilage tissue ultimately has to be removed, resulting in

stable and vertical defect walls surrounded by healthy and

vital cartilage and a subchondral bone plate lamella free

from residual calcified cartilage tissue, avoiding bleeding

from the subchondral bone, as in vitro studies show a neg-

ative influence of blood on the regeneration capacity. The

technique of implantation and fixation is product-

dependent. In general, the supporting membrane is accu-

rately adapted to the geometry of the defect, implanted

and firmly fixed (Fig. 80.2). For fixation, it may be

anchored to the adjacent cartilage using single interrupted

sutures (e.g., USP 6-0) or with resorbable pins or fibrin

glue (Fig. 80.3). Erosion of the subchondral bone plate is

tolerable up to a depth of the bony lesion of about 5 mm.

Deeper osteochondral defects should be recontoured by

filling with autologous cancellous bone. This “sandwich

technique” is a useful option for large osteochondral

defects based on osteochondritis dissecans (OD), where

there is no possibility of fragment replication.

Clinical results of autologous
chondrocyte implantation

Overview

A large clinical body of therapeutic evidence already

exists for ACI (Fig. 80.4). Long-term studies with a

FIGURE 80.1 Cartilage defect of the patella in a 28-year-old man as a

result of a direct trauma in the course of a traumatic patellar luxation.

Note the partial subchondral involvement indicated by the incomplete

blood clot at the base of the defect.
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follow-up of up to 20 years, specific information on typi-

cal complications, together with meta-analyses of several

thousand patients on its clinical results and the important

possibility of returning to sports for the younger patient

population that mainly benefits from the intervention, all

showing relatively good outcome parameters. Most

importantly, a significant number of data from prospec-

tive randomized clinical trials (RCTs) have refined the

indications for ACI, especially within the context of the

regulatory steps as required for approval of ACI as a

drug. Most of these very valuable studies have been

designed for ethical reasons as “noninferiority studies,”

thus the control group represents another form of surgical

therapy, which is in the most of the cases an arthroscopic

microfracture. However, in the context of these studies, it

has to be kept in mind that most of these studies compar-

ing arthroscopic microfracture with ACI are studying

patients with defect sizes that are rather small, thus often

not meeting the indications for ACI, which are chondral

defects larger than 2.5�3.0 cm2 (marrow stimulation is

indicated for defects smaller than 2.5�3.0 cm2). As the

defect size is an essential criterion, a direct comparability

with microfracturing for larger defects has not been per-

formed to date. The fact that most long-term RCTs are

based on defects sizes not higher than 4.0 cm2 and

involve first-generation ACI suggests that more high-

quality clinical evidence is needed for a satisfactory

answer as to whether recent techniques of ACI show

superior clinical outcomes in long-term follow-up com-

pared with microfracture. Nevertheless, meta-analyses of

the second and third generations of ACI (i.e., the cur-

rently marketed products) show the evidence of superior-

ity of ACI in individual studies at the structural

(histology) and clinical levels.

Data from prospective randomized clinical trials

Knutsen et al. reported a long-term follow-up at 15 years

of a randomized multicenter trial (level I) comparing

first-generation ACI with microfracture. The 80 patients

had cartilage defects mainly in the femoral condyles, and

the defect sizes ranged from 1.4 to 11.2 cm2. At 15 years,

the clinical data from this important trial showed signifi-

cant clinical improvements compared with baseline (clini-

cal scores and pain) and no significant differences

between both treatment groups. Failures were noted in

FIGURE 80.2 After meticulous defect preparation, the membrane sup-

porting the chondrocytes in this third-generation ACI product is accu-

rately adapted to the geometry of the defect and implanted. ACI,

Autologous chondrocyte implantation.

FIGURE 80.3 Fixation of the ACI membrane to the adjacent cartilage

with single interrupted sutures (USP 6-0) has been performed. ACI,

Autologous chondrocyte implantation.

FIGURE 80.4 MRI of the femoropatellar joint of the case after 1 year.

Note the complete filling of the defect with a repair tissue, its relatively

good integration to the adjacent articular cartilage and the subchondral

bone, the irregular subchondral bone plate and the structural differences

of the repair tissue compared to the adjacent cartilage.
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