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T
he field of implant dentistry continues to evolve 
and improve. One constant that has not changed 
is the need for sufficient bone volume at the site 

of implant placement to facilitate osseointegration and 
continued bone support over time. Bone augmentation 
is often required to accomplish this important goal. Many 
books on implant dentistry reflect an author’s approach to 
a specific clinical problem—a “this is how I do it” book. I 
have always had a passion for research and teaching, and 
my goal for this text was to explain not only how I do it 
but also why and when we do it. 

The first six chapters provide the reader fundamental 
knowledge of the science of bone augmentation, and 
chapters 7 to 10 cover the diagnosis and planning for 
bone augmentation surgery. The centerpiece of the text 
is the Michigan Classification for horizontal and vertical 
bone augmentation. Dr Hom-Lay Wang and I developed 
the Michigan Classification to offer clinicians an evidence-
based decision tree for managing different clinical situa-
tions. This classification focuses on the treatment of bone 
defects and deficiencies outside the bony contour. The 
current research on outcomes using various methods of 
bone augmentation and biomaterials was evaluated to 
construct parameters and guidelines. Finally, chapters 11 
to 18 discuss the various techniques for horizontal and 
vertical bone augmentation. 

For this text I invited the most knowledgeable clini-
cians and researchers in their specific areas of expertise 
to coauthor the chapters. As such, it reflects a collective 
body of work rather than one author’s preference or opin-
ion. My goal was to provide a comprehensive source of 
authoritative information on the topic of bone augmen-
tation. I also wanted to establish guidelines for students, 
clinicians, and researchers on predictable approaches to 
bone regeneration for dental implant therapy. 

Technology has improved our ability to diagnose, 
plan, and execute treatment; using CBCT, we can create 

a virtual patient for prosthetic guided bone augmenta-
tion. Customized scaffolds for bone regeneration can be 
fabricated based on the specific needs of each patient. 
Recombinant growth factors can be used to improve 
the regenerative capacity of osteoconductive biomate-
rials. Further advancements will undoubtedly improve 
outcomes. Surgeons should consider the advantages and 
disadvantages of each material and technique for the clin-
ical situation and choose the approach with manageable 
costs, low morbidity, and the greatest chance for success. 
This text offers the reader a better understanding of how 
to accomplish these goals and improve the lives of their 
patients.
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BONE VOLUME FOR DENTAL  
IMPLANT PLACEMENT

Craig M. Misch  |  Hom-Lay Wang  |  Maggie Misch-Haring 

1

T
he replacement of missing or failing teeth with 
dental implants has revolutionized the field of 
dentistry and improved the quality of our patients’ 

lives. High success rates and excellent predictability 
of dental implant therapy have been demonstrated in 
numerous clinical studies and a variety of indications. A 
number of factors important for the long-term survival 
and/or success of implants and implant-supported pros-
theses have been identified. One critical prerequisite is a 
sufficient volume of bone at the site of implant placement 
to facilitate osseointegration and continued bone support 
over time. In a prosthetic-driven approach to treatment, 
the planned prosthesis guides the number and 3D posi-
tion of the implants. If the preferred implant locations 
have inadequate available bone, then bone augmentation 
may be required so that the implant can be placed in 
the ideal position for esthetics, prosthetic support, and 
long-term function. 

Bone Volume

The volume of bone in the edentulous site planned for 
implant placement is measured in 3D in terms of width, 
height, and angulation. 

Bone width

The minimum bone width is dependent on the preferred 
implant diameter and location. A minimum 2.0-mm 

facial bone thickness has been recommended around 
implants in the esthetic zone to avoid crest resorption 
and gingival recession.1,2 However, this recommendation 
was based on 1.4-mm horizontal bone loss found around 
external hex connection implants3 (Fig 1-1). Tissue-level, 
conical-connection, and platform-switching implants 
are associated with less bone resorption.4–6 A clinical 
study found that the horizontal component of bone 
loss around platform-switching implants measured only 
0.6 mm.7 Therefore, using implant designs with a conical 
seal, medialized connection, or absence of a microgap, 
such as a tissue-level implant, may reduce the ridge width 
requirement to 1.0 to 1.5 mm of facial and palatal/lingual 
bone (Fig 1-2). In addition, the edentulous ridge typically 
widens apically from the crest, so vertical bone reduc-
tion may be an alternative to bone augmentation in areas 
where esthetics is not a concern. However, in some cases 
the facial and palatal/lingual cortices may show minimal 
divergence. 

Another alternative to bone augmentation of the 
atrophic ridge with deficient width is to use a narrow- 
diameter implant (NDI; Fig 1-3). A recent systematic review 
and meta-analysis found that implant diameters of  
3.0 to 3.5 mm showed no difference in implant survival 
compared to standard-diameter implants (> 3.5 mm).8 
Additional systematic reviews and meta-analyses of stud-
ies have also found that NDIs are an effective alternative 
to standard-diameter implants due to similar survival 
and success rates, marginal bone loss, and mechanical 
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6.8 mm
7.8 mm

7.8 mm
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4.0
mm
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BW

1.4 mm

FIG 1-1 Cross-sectional (a) and occlusal 
(b) views of horizontal bone loss around 
an external hex implant. A minimum ridge 
width of 7.8 mm would be needed for 
placement of a 4.0-mm-diameter implant.

5.2 mm
6.2 mm 6.2

mm

4.0 mm

4.0
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0.5 mm

0.6 mm
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FIG 1-2 Cross-sectional (a) and occlusal 
(b) views of horizontal bone loss around a 
conical-connection implant. A minimum 
ridge width of 6.2 mm would be needed for 
placement of a 4.0-mm-diameter implant. 

ba

FIG 1-3 (a) A preoperative CT scan reveals a narrow ridge in the edentulous maxilla. (b) Preoperative occlusal view of the atrophic 
maxilla. ➜

a b

a b
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Bone Volume

and biologic complication rates.9,10 Stronger metals, such 
as titanium-zirconium or titanium alloy, may reduce the 
risk of implant fracture when NDIs are used. System-
atic reviews on titanium-zirconium NDIs have found 
implant success and survival rates to be similar to those 
of standard-diameter titanium implants with no increase 
in fractures.11,12 However, long-term survival and data 
on the possible risk of technical complications with 
wide-platform restorations on NDIs are lacking. As such, 
a standard- or wide-diameter implant for single molar 
replacement may be prudent.

Bone height

The minimum bone height for implant placement is 
dependent on several factors. One consideration is the 
anatomical region. In the posterior maxilla, the floor of 
the sinus can limit the available bone height. However, 
the sinus floor is an anatomical boundary that can be 

encroached upon or manipulated via an internal or 
lateral sinus elevation. Many studies have shown that the 
survival of short implants (< 8 mm in length) is the same 
as that of longer implants placed into grafted sinuses.13,14 
Although there is no definitive bone dimension needed 
before considering sinus bone grafting, 6.0 to 8.0 mm 
inferior to the sinus floor appears to be sufficient (Fig 
1-4). In the posterior mandible, the mandibular canal 
and lingual cortex can limit implant length. A common 
rule is to allow for at least a 2.0-mm distance from the 
mandibular canal for implant placement to account for 
potential inaccuracies in radiographic measurements, 
drilling depth, and implant placement.15 As mandibu-
lar bone is usually of better quality, extra-short implants  
(6.0 mm in length) have been shown to be effective16 (Fig 
1-5). As such, 8.0 mm of available bone height superior 
to the canal is needed to place extra-short implants in the 
posterior mandible (Fig 1-6).

c d e

f g

FIG 1-3 (cont) (c) Surgical view of the atrophic maxilla. The nasal and sinus floors were 
identified, and the mucosa was reflected superiorly. (Surgery performed by Dr Maggie 
Misch-Haring.) (d) Placement of an NDI (3.3 × 8.0 mm) with a nasal lift. (e) Six NDIs  
(3.3 × 8.0 mm) were placed in the atrophic maxilla. (f) The implants were restored with 
an implant-connecting bar. (g) Occlusal view of the implant-connecting bar. Note the 
medial position of the implants due to maxillary atrophy. (h) Intaglio view of the maxillary 
overdenture with attachments. (i) Clinical view of the maxillary overdenture.

h

i
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The amount of bone resorption following the loss of 
teeth determines the crown height or prosthetic space. 
Implant crown–abutment height space is defined as the 
distance from the occlusal plane to the platform of the 

implant(s). The available restorative space will influence 
the type of prosthesis, material choices, and surgical tech-
niques. It also has esthetic and biomechanical implica-
tions. In the esthetic zone, the decision needs to be made 

FIG 1-4 Vertical bone height requirements 
in the posterior maxilla.

Sinus bone graft ➞
Standard implant ≥ 8 mm

Transcrestal sinus elevation
Standard implant 8–10 mm
Short implant 6–8 mm

Standard implant ≥ 8 mm

< 6 mm

6–8 mm

> 8 mm

Region Vertical bone height Treatment option

Posterior
maxilla

a b c

d e f

g h

FIG 1-5 (a) Preoperative view of the atrophic 
posterior mandible. (b) Preoperative CT scan of 
the atrophic posterior mandible. (c) Clinical view 
of the atrophic right posterior mandible. (d) The 
atrophic ridge was grafted with particulate autoge-
nous bone and cortical mineralized bone allograft 
covered with a titanium-reinforced dense poly-
tetrafluoroethylene (dPTFE) membrane. (e) After 
6 months of healing, the membrane was removed 
for implant placement. (f) Two short tissue-level 
implants (4.1 × 6.0 mm) were placed into the 
grafted mandible. (g) Occlusal view of the two 
short tissue-level implants in the right posterior 
mandible. (h) The implants were restored with 
individual screw-retained crowns.
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regarding whether to reconstruct a vertical bone defect 
in an attempt to replicate normal anatomy or to replace 
the missing hard and soft tissue with the prosthesis. As 
vertical bone augmentation is more technically difficult, 
a prosthetic solution may provide a more predictable and 
straightforward approach in some cases. When crown–
abutment height space is excessive, the resultant load on 
the prosthetic connection increases (Fig 1-7). This can 
result in a greater risk of technical complications such 
as abutment screw loosening and component fracture. 
When the crown–abutment height space becomes greater, 
the implant crowns may be splinted to decrease the risk of 
mechanical complications. However, systematic reviews 
have found that marginal bone loss and implant survival 
do not appear to be influenced by the crown-to-implant 
ratio.17–19

Ridge angulation

In some cases, the angulation of the ridge in the edentu-
lous site may not allow for the ideal implant trajectory. 
This problem is most often encountered in the atrophic 
maxilla. As the facial bone resorbs following extraction, 
the long axis of the ridge can become more tilted facially 
in line with the palatal contour (Fig 1-8). If the implant 
is placed in a more vertical orientation, the facial bone 
may be too thin or the apex may perforate the buccal 
cortex. This issue may be a more significant problem with 
single-tooth implants and small-span implant-supported 
partial dentures in the anterior maxilla. Bone augmenta-
tion may be needed to restore the ridge contour and allow 
for a better implant trajectory. An alternative approach 
is to place the implant at an angle within the bone and 

Vertical augmentation ➞
Standard implant ≥ 8 mm

Short implant 6–8 mm

Standard implant ≥ 8 mm

< 8 mm

8–10 mm

> 10 mm

Region Vertical bone height Treatment option

Posterior
mandible

FIG 1-6 Vertical bone height require-
ments in the posterior mandible.

FIG 1-7 Using short implants in an atrophic ridge increases 
the crown–abutment height space. Placing a short implant 
into an atrophic ridge will result in greater crown-abutment 
height (D). Because moment = force × distance, a greater 
distance (D) will increase the moment or torque on the 
implant-abutment connection.

Occlusal plane

Lateral force

Moment =  
Force × Distance

Short implant
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use an angulated abutment to alter the path of prosthetic 
attachment or use an angulated screw channel. Although 
in the past there was concern regarding off-axis loading 
of dental implants, more recent studies have found no 
decrease in implant survival or higher marginal bone 
loss with tilted implants.20 

Soft Tissue Thickness

Another important factor for stability of the peri-implant 
bone is vertical soft tissue thickness. Several studies have 
suggested that approximately 4.0 mm of supracrestal 
soft tissue height is required to allow the formation of 
a biologic seal.21,22 A more accurate term may be supra­
crestal tissue adhesion due to horizontal fiber orientation 
around the dental implant.22 Thin tissue may induce bone 
remodeling around the implant neck to obtain adequate 
biologic width.23–26 When managing a deficient ridge with 
a thin phenotype, it may be necessary to plan for soft 
tissue as well as hard tissue augmentation.

The Consequences of Tooth Loss

Insufficient bone for dental implant placement can be a 
consequence of periodontitis, infection, trauma, pathol-
ogy, tooth loss, jaw atrophy, congenital absence of teeth, 
or previous dental implant failure. Following tooth loss, 
the bundle bone lining the socket is rapidly resorbed. The 
greatest amount of alveolar bone loss occurs on the facial 
aspect due to the limited thickness of the buccal cortex 
compared to the lingual/palatal aspects of the socket 
walls.27 The thickness of the facial cortex in the crestal 
area of teeth in the anterior maxilla has been shown to be 
thin (< 1 mm) in approximately 90% of patients.28,29 Sock-
ets that have thin facial bone are prone to more resorption 

following tooth loss. Although this results in more hori-
zontal resorption, there is also loss of vertical ridge 
height, which has been reported to be most pronounced 
on the buccal aspect.30 A CBCT study found that thin 
facial wall thickness (< 1 mm) was associated with signif-
icant vertical bone resorption, with a median vertical 
bone loss of 7.5 mm, as compared with thicker socket 
walls (> 1 mm), which showed vertical bone resorption of 
only 1.1 mm after 8 weeks of healing.31 Human studies on 
alveolar bone resorption following extraction have shown 
horizontal bone loss of 29% to 63% and vertical bone loss 
of 11% to 22% after 6 months of healing.32 These studies 
demonstrated rapid reductions in the first 3 to 6 months, 
followed by a gradual reduction in dimensions thereafter, 
when remodeling of the ridge begins to plateau. However, 
longitudinal studies have found a continued reduction of 
the residual ridge in patients wearing soft tissue–borne 
removable prostheses.33,34

Bone resorption following tooth loss can compro-
mise the bone volume for implant placement and may 
also have a deleterious effect on the implant position. In 
the maxilla, there is a greater loss of facial bone initially, 
so the residual ridge loses width and moves in a medial 
direction. As a consequence, the long axis of the ridge 
for implant placement tilts more to the facial (see Fig 
1-8). With additional resorption, there is a loss of bone 
height and continued palatal shift of the ridge crest (Fig 
1-9a). This can compromise implant positioning as the 
restorations need to be facial to the ridge crest. In the 
mandible, the initial loss of facial bone also results in a 
loss of ridge width as the residual ridge moves in a medial 
direction. However, with continued atrophy and loss of 
bone height, the lingual inclination of the mandible leads 
to a gradual inferior and lateral shift of the ridge crest 
(see Fig 1-9a). In the sagittal plane, the anterior maxilla 

a b

FIG 1-8 Facial bone resorption following tooth loss requires 
a more facial implant inclination. Note the difference between 
the position of an implant placed upon extraction of a maxillary 
incisor (a) versus implant placement after extraction and bone 
remodeling at the expense of the facial (b, black line represents 
facial contour of the resorbed ridge). The implant needs to be 
inclined more buccally.
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resorbs in a superior and posterior direction while the 
anterior mandible resorbs in an inferior and anterior 
direction (Fig 1-9b). In the edentulous patient who has 
experienced moderate to severe ridge resorption in both 
the maxilla and mandible, a resultant skeletal Class III 
relationship occurs along with a prognathic appearance. 
Such bone atrophy can cause compromised interarch rela-
tionships in the vertical, transverse, and sagittal planes, 
which may complicate dental implant placement from a 
functional and esthetic perspective.

Bone loss and soft tissue alterations following tooth 
loss in the anterior maxilla can have a significant impact 
on the esthetic outcome of implant-supported resto-
rations. To restore ridge contour and provide adequate 
bone volume for implant placement, bone and soft tissue 
augmentation is often a prerequisite to achieving a satis-
factory esthetic result. These cases can be especially chal-
lenging when lip mobility exposes the maxillary gingiva 
or vertical bone augmentation is needed.

As bone loss following tooth extraction can negatively 
influence bone volume for implant placement and posi-
tion, esthetics, and biomechanics, it is prudent to consider 
measures to maintain alveolar bone. The use of alveolar 
ridge preservation (ARP) can minimize dimensional 
changes following tooth extraction to provide adequate 
bone volume for dental implant placement. Extraction 
sites treated with socket bone grafts (ARP) have been 
shown to have significantly less dimensional change both 
vertically and horizontally when compared with controls 
not treated with ARP procedures.35 In conjunction with 
minimally traumatic tooth extraction, this may reduce 

the need for subsequent bone augmentation procedures 
or decrease the amount of bone gain required for future 
dental implant placement. 
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THE SCIENCE OF BONE:  
FORM AND FUNCTION
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2

Mechanisms of Bone Growth

The pattern of human craniomaxillofacial bone growth 
occurs as a result of two types of bone formation, the pre-
dominant one being intramembranous (or appositional) 
bone growth.1 Intramembranous bone growth generally 
takes place on the surfaces of the maxilla and mandi-
ble. When new bone is added on cancellous surfaces, 
the shape of the skeletal element does not change, but 
its density does. Bone accrual can also occur on buccal 
and lingual surfaces, and in these cases, the shape of the 
skeletal element changes. Appositional bone growth also 
occurs at midfacial sutures. For example, the premaxillary 
suture slants downward and backward, so as the suture’s 
mesenchyme proliferates, the entire maxilla is displaced 
downward and forward. 

Growth of the appendicular and axial skeletons, and 
select parts of the craniomaxillofacial skeleton, occurs via 
endochondral ossification. For example, the forward and 
downward growth of the mandible is propelled by endo-
chondral ossification at the cartilage caps of the condyle.1 
Endochondral ossification is also responsible for expan-
sion at the midpalatal suture2 and at the sagittal suture.3 

Cells Involved in Bone Formation

Contribution of cranial neural crest and 
mesoderm to craniomaxillofacial skeleton

In craniomaxillofacial (CMF) skeletogenesis, both 
intramembranous and endochondral ossification are 
accomplished by cells that arise from the cranial neural 
crest (for the maxilla and facial bones as well as the cra-
nium) or cranial mesoderm (for the mandible and hyoid). 
Regardless of their embryonic origin, these cells are ulti-
mately responsible for differentiating into chondroblasts 
and osteoblasts. The trigger for this step is not clear but 
is likely related to mechanical cues in the extracellular 
environment. Cells initiate differentiation by forming an 
aggregate, which distinguishes them from surrounding 
cells.4 

Osteoblasts and chondroblasts

A process of condensation is associated with the upreg-
ulation of transcription factors, including Runx25,6 and 
Osterix.7 After the aggregate or condensation has formed, 
cells then initiate differentiation either into chondro-
cytes, heralding the onset of endochondral ossification, 
or into osteoblasts, foreshadowing the beginning of 
intramembranous ossification. In the CMF skeleton, a 
proteoglycan- rich cartilage intermediate (red structures in 
Fig 2-1a) can be observed emerging from the immature 
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FIG 2-1 Bone development and growth. (a) Safranin O/fast green histology depicting appositional growth at the 
midpalatal suture, where chondroblasts secrete new matrix along existing surfaces, which causes the cartilage to 
expand and widen. (b) Pentachrome histology of the temporomandibular joint, whose articular surface is lined by 
fibrocartilage. (c and d) Immunostaining for the osteogenic transcription factors Runx2 and Osterix, expressed in 
osteoblasts that line the mineralized matrix of bone. (e) Van Gieson histology of mineralized bone matrix, where the 
dendritic morphology of osteocytes can be observed (arrow). (f) Transmission electron microscopy of an osteocyte 
in its lacuna, extending a dendrite (arrow) within one canaliculus. (g) Tartrate-resistant acid phosphatase enzymatic 
reaction staining for multinucleated mature osteoclasts at the bone surface. (h) These osteoclasts are also visible in 
cathepsin K immunostaining. Scale bars = 100 µm (a to d), 25 µm (e), 500 nm (f), and 50 µm (g and h). 
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Tissue Compartments of Bone 

midpalatal suture. A persistent hyaline cartilage, which 
stains blue when using pentachrome histology (Fig 2-1b), 
can be observed covering the temporomandibular joint 
surface. In CMF periostea, the co-expression of Runx2 
and Osterix signals the osteoblast maturation (Figs 2-1c 
and 2-1d). 

Osteocytes 

A subset of osteoblasts become entrapped in the col-
lagenous matrix, and these will become some of the 
longest-lived cells of the body, ie, osteocytes (Fig 2-1e). 
Once thought to be quiescent, it is now fully realized that 
these nonmitotic cells are nonetheless key orchestrators 
of bone remodeling and mineral metabolism.8 Osteo-
cytes are connected to one another via dendritic processes 
that extend into microscopic channels (canaliculi) that 
penetrate the mineralized matrix (arrows, Figs 2-1e and 
2-1f). Osteocytes play a critical role as mechanosensors 
via these processes, sensing not only fluid flow within 
the canaliculi but also sending larger molecules (recep-
tor activator of nuclear factor kappa-B ligand [RANKL]/
osteoprotegerin [OPG], fibroblast growth factor-23 [FGF-
23], and sclerostin/Dkk1/Wnt) to other osteocytes and 
osteoblasts via the periosteocytic fluid.9 Osteocytes direct 
bone homeostasis10 and control the rate of osteoblast pro-
liferation as well as osteoclast maturation and resorbing 
activity.11

Osteoclasts and bone resorption

Resorption occurs at the mineralized surface of bone 
by osteoclasts and is closely coupled to bone forma-
tion. Osteoclasts are specialized multinucleated cells 
that originate from the fusion of precursor cells of the 
monocyte/macrophage hematopoietic lineage (Fig 2-1g). 
When a mature osteoclast attaches to the bone surface, 
an anchorage mechanism involving actin filaments gen-
erates a sealing zone. The sealing zone creates a delimited 
compartment, and the osteoclast membrane is described 
as having a “ruffled” border. In the confined area of the 
sealing zone, the osteoclast secretes acidic hydrogen 
ions, which dissolve the mineral component of the bone 
matrix. Once the minerals have been dissolved, the osteo-
clast then secretes collagenase, cathepsin K, and other 
hydrolytic enzymes to degrade the organic component 
of the demineralized bone matrix (Fig 2-1h). The bone 

side of the sealing zone compartment is described as a 
“resorption bay,” also known as a Howship lacuna.

Macrophage colony‐stimulating factor (M‐CSF) and 
RANKL are produced by osteoblasts, fibroblasts, and 
osteocytes and are needed to engage osteoclastic precur-
sors to fuse and share their nuclei to form mature osteo-
clasts. The regulation of resorption involves OPG, which 
is also secreted by osteoblasts, as a decoy that binds to 
RANKL, thus inhibiting its ability to bind to its recep-
tor, RANK; in this way, osteoclast maturation and bone 
resorption are blocked.12

Tissue Compartments of Bone 

The periosteum

Since the first scientific demonstration of the osteogenic 
capacity of the periosteum by Duhamel du Monceau in 
1739, when he performed the “silver ring” experiment,13 
this tissue has been under continual investigation, with 
the goal being to harness its bone-forming potential. 
Most assumptions about the periosteum’s contribution to 
bone healing are extrapolated from experimental models 
of skeletal repair in long bones. For example, in several 
surgical orthopedic techniques, periosteal grafts have 
been used to treat bone fractures.14 Periosteal grafts, how-
ever, are not employed in oral surgery. Because of their 
histologic similarities, it is assumed that the periosteum 
of long bones and craniofacial bones (Fig 2-2a) is analo-
gous; however, this conjecture is only partially accurate. 
For example, in the CMF skeleton, an outer fibrous 
periostin-positive layer contains nerves and blood ves-
sels (Fig 2-2b) and encases an inner (cambium) layer 
composed of Runx2-positive skeletal stem and osteo-
progenitor cells (Fig 2-2c). Alizarin red/calcein green 
dye incorporation into calcifying matrix demonstrates 
that the CMF periosteum is the primary site of new bone 
formation in the CMF skeleton (Fig 2-2d). 

A number of unique features distinguish the appendic-
ular skeleton and its associated periosteum from the CMF 
skeleton and its periosteum. Specifically, the physical and 
cellular characteristics of periostea differ with anatomical 
location.15 For example, the tibial periosteum is loosely 
attached to overlying muscle, while the maxillary perios-
teum is tightly adherent to overlying connective tissue.16 
Molecular, cellular, and genetic studies demonstrate that 
long bone periostea are more osteogenic than flat bone 
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periostea,17 but craniofacial periostea enclose cells with 
greater multipotency.15 

In addition, CMF and appendicular periostea are 
differentially affected by anabolic agents such as bisphos-
phonates.18–20 Leucht et al15 used a lineage labeling strategy 
to demonstrate that craniofacial and long bone periostea 
contribute differently to bone repair: In long bones, peri-
osteal stem/progenitor cells are derived from mesoderm, 
whereas in CMF bones, the periosteal stem/progenitor 
populations are derived from the neural crests.15 

Stimulation of long bone periostea induces an osteo-
genic, regenerative response,21 whereas the maxillary 
periosteum has a delayed, attenuated response to the 

same injury. Mouraret et al showed in 2014 that eleva-
tion of the appendicular periosteum through a tunneling 
procedure triggers an osteogenic response, whereas in the 
maxillary bone, tenting and space maintenance are neces-
sary to achieve a similar vertical bone augmentation.22 

The mineralized matrix of bone

Mature osteoblasts produce an abundant collagen-rich 
extracellular matrix (collagen type 1, for bone), as well 
as noncollagenous proteins (eg, osteopontin and bone 
sialoprotein), that play critical roles in directing the min-
eral deposition in the collagen matrix (along with the 

FIG 2-2 Tissue composition of bone as an organ. (a) Pentachrome histology depicting the periosteum membrane covering the outer 
surface of bone. (b) Periostin immunostaining showing the fibrous component of periosteum. (c) Runx2 immunostaining showing 
the layer of osteogenic cells in the periosteum. (d) Calcein (green)/alizarin red dye incorporation at the periosteum, revealing layers 
of incremental mineralization/calcification. (e) Pentachrome histology depicting unmineralized bone matrix (blue, arrow). (f) This 
unmineralized bone matrix is also visible in toluidine blue staining, while von Kossa reaction stains for phosphate minerals/miner-
alized matrix. (g) Pentachrome histology depicting osteocytes in their lacunae within the mineralized matrix. (h) Scanning electron 
microscopy (SEM) reveals the network of interconnections between osteocytes’ lacunae. (i) Pentachrome histology of alveolar bone 
harboring a dental root and large medullary spaces in the diploë. (j) Higher magnification of an alveolar medullary space filled with 
stromal tissue, blood cells, and bone trabeculae. po, periosteum. Scale bars = 30 µm (a to f, j), 20 µm (g), 10 µm (h), and 100 µm (i).

O
st

eo
id

 &
  

m
in

er
al

iz
ed

 m
at

rix
A

lv
eo

la
r 

m
ed

ul
la

ry
 s

pa
ce

s
Pe

rio
st

eu
m

cba d

gfe h

i j



13

The Structure of Bone 

local concentration of calcium and the ratio of phosphate/
pyrophosphate). When the bone matrix is still unminer-
alized, it is referred to as osteoid (arrow, Fig 2-2e); as the 
osteoid accumulates carbonate-substituted hydroxyapa-
tite minerals that crystalize within, on top, and between 
collagen fibrils, it becomes mature bone matrix and stains 
for von Kossa (Fig 2-2f). The mature bone matrix encases 
osteocytes, whose nuclei stain red in a pentachrome his-
tology (Fig 2-2g) and whose lacunae contribute to the 
porosity of lamellar bone (Fig 2-2h).

The medullary cavity in CMF bones

In most CMF bones, the outer and inner dense cortical 
plates are separated by diploë (Fig 2-2i). This interior 
structure is composed of trabecular/spongy/cancel-
lous bone without any continuous medullary cavity, as 
opposed to the contiguous marrow cavity in long bones. 
In the core of CMF bones, some islets of bone marrow 
are present, interwoven with cancellous bone trabeculae 
(Fig 2-2j). The marrow itself consists of hematopoietic 
cells, lymphoid tissue, stromal cells, and adipose cells 
surrounded by blood vessels. The bone marrow produces 
red and white blood cells and platelets, and it also harbors 
a population of skeletal and hematopoietic stem cells. 

In some CMF bones, including the maxillary bones, 
diploë is absent, and the inner and outer layers of the 
bone are separated by a large air cavity (eg, the maxillary 
sinus) that extends through a process called pneuma-
tization. This unique feature lightens the weight of the 
skull, and it is a shared feature of bones from birds and 
dinosaurs.23

The Structure of Bone 

Bone is organized in a hierarchical manner, extending 
from its macroscale arrangement to its nanoscale struc-
ture. As recently confirmed with 3D imaging technolo-
gies,24 the curved and spiral structure of bone is evident 
even in its nano- and macro-architecture. First observed 
as a ubiquitous pattern in nature,25 the spiral pattern in 
biologic objects was hypothesized to confer specific 
adaptive functions.26 In skeletal tissues, the spiraled min-
eralized extracellular matrix consists of water, carbonate- 
substituted hydroxyapatite crystals, and an organic 
component made of type 1 collagen fibrils, noncollage-
nous proteins, and small proteoglycans. It is the spatial 

arrangement of these constituents that render skeletal 
elements to be simultaneously pliable, strong, and light-
weight. While this blueprint for skeletal architecture is 
partially contained within the cells’ genome, there is also 
an epigenetic component: Skeletal tissues are responsive 
to mechanical forces, remodeling in reaction to both 
increased and decreased loads.27 The balance between the 
stiffness and toughness allows bone to withstand a wide 
range of masticatory forces and movement against grav-
itational forces and protects against traumatic mechani-
cal impact, all at a reasonable metabolic cost.

At a macroscopic level, bone extracellular matrix is 
organized in layers (as lamellae) and in an interconnected 
network (as trabeculae; Fig 2-3a). Bone that is organized 
in lamellae, ie, compact (cortical) bone, has limited 
porosity; conversely, trabecular (cancellous) bone exhib-
its a greater degree of porosity (Figs 2-3b and 2-3c; see 
Currey28). Typically, there is a morphologic distinction 
between compact (see Fig 2-3c) and cancellous bone (Fig 
2-3d), and this organization is in part regulated by the 
rate at which osteoblasts secrete collagen. For example, 
osteoblasts whose rate of collagen secretion is slower give 
rise to lamellar bone,12 whereas osteoblasts whose rate of 
collagen secretion is higher give rise to woven bone.29,30 
In the maxillary and mandibular alveolar processes, bone 
with a porous, woven macrostructure is called bundle 
bone, which is contained within bone that has a compact, 
lamellar macrostructure, ie, the buccal and lingual/palatal 
plates (shown in 2D and 3D in Figs 2-3e and 2-3f). 

In most parts of the skeleton, woven bone is viewed 
as a transient tissue that is sooner or later resorbed and 
replaced by lamellar bone (reviewed in Shapiro and 
Wu31), but in regions of the CMF complex, woven bone 
persists32—that is, at least until teeth are lost. Then, 
concomitant with the edentulous state, woven porous 
bone is replaced by compact lamellar bone.33 This obser-
vation clearly implicates mechanical loading as one factor 
influencing the macrostructure of bone in the jaws. 

Mechanical forces shaping the structure 
of the skeleton

The rate of bone remodeling in the jaws is very high, 
and unlike in other bones, it remains elevated even after 
adolescence.34 This high turnover in the maxilla and 
mandible is thought to be triggered by the constant need 
for repair of the microfractures inflicted by mastication 
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and occlusal loading.35 Although the maxilla and man-
dible bear similar masticatory loads, the maxilla mostly 
transfers the strain and stress to the upper cranium; the 
mandible, in contrast, stands alone and absorbs all the 
loads. This distinctive feature impacts the morphology 
of the two bones: the mandible is stronger and stiffer 
than the maxilla. Anatomically, the maxilla has the typical 
structure of a bone that endures compressive loads, such 
as the vertebral body; it is composed of a dense network 
of trabeculae contained within thin cortical plates. On 
the other hand, the mandible resembles the shaft of a 
long bone, with thick cortical plates and trabeculae ori-
ented along the bending and torsion loads.36,37 Clinically, 
when tori are present in the mandible, the biggest torus 
develops where bending and torsion strains are maximal, 
typically on the side where chewing is predominant.

Masticatory loading is associated with dynamic bone 
remodeling,38 and when masticatory forces are suspended 
(either by removing teeth or in an experimental situation, 
shifting to a liquid or soft diet), bone resorption predom-
inates over bone formation, with the effect of a net loss in 
bone volume.39,40 Conversely, increasing masticatory load-
ing triggers a transient increase in bone formation and 
a decrease in bone resorption, resulting in a net gain of 

bone volume.41 The gain in bone volume serves to reduce 
stresses and strains in bone back to a baseline level. This 
response of bone to different mechanical conditions is 
described by Frost in his mechanostat theory (reviewed 
in Frost42). When teeth are lost, the continuity of the jaw 
bones is disrupted, and the same masticatory forces can 
become detrimental.43

Transfer of periodontal mechanical loads to 
bone via the periodontal ligament 

Functionally, the tooth-bone periodontal interface is a 
mechanical device, where the tooth serves as a tool to 
manipulate and break down food. The periodontal inter-
face comprises two hard materials: (1) the bundle alveolar 
bone layering the bony socket of the tooth, and (2) the 
acellular cementum layering the parts of the dental root 
that are involved in tooth anchorage.44 These hard tis-
sues are separated by a fibrous periodontal ligament that 
serves two critical functions. The short-term function is 
to transmit occlusal loads (tension and pressure) to the 
supporting bone, while simultaneously providing pro-
tection against sudden impacts, acting as a kind of shock 
absorber. This short-term masticatory function is permit-
ted by the combination of rigidity and elasticity within 

FIG 2-3 Alveolar bone structure. 
(a) Micrograph of trabecular bone 
(arrow) at the maxillary tuberosity on 
a dry skull. (b to d) Microscanning 
tomography 3D volume rendering 
of alveolar bone with dense cortical 
plates (asterisk in b) and trabecular 
organization of the inner diploë (c), 
composed of cancellous bone (d).  
(e and f) The dual structure of alve-
olar bone is also visible in the axial 
plane.
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the periodontium, thus mitigating concentrated, acute 
stresses on the surrounding bone.41 The longer-term func-
tion of the periodontal ligament is to continually adapt 
to changes in loading by furnishing the cellular, sensory, 
and vascular elements required for tooth positioning 
(by natural drifting or with orthodontic treatment). 
This long-term positioning function is permitted by the 
combination of pliability and plasticity of the periodon-
tium. In homeostasis, the periodontal ligament exhibits 
very low turnover,40 but upon injury, it is capable of rapid 
repair and adaptation to a new mechanical condition.39 

Transfer of peri-implant mechanical loads  
directly to bone 

The dental implant–bone interface differs significantly 
from the tooth root–bone interface, from both biologic 
and mechanical points of view. An implant is considered 
osseointegrated if, under functional loading, it remains 
virtually immobile within the bone. There is no ligament 
between the implant and neighboring mineralized tissue 
(ie, the implant is directly connected to the bone), and 
this causes alterations in stress and strain distribution 
in the surrounding bone.45,46 The type, frequency, and 
magnitude of the load, coupled with implant geometry, all 
have an impact on the mechanical load that is transferred 
from the dental implant to the surrounding bone.47,48

Growth and Atrophy of Bone

Maxillary and mandibular growth

There is a strong correlation between the timing, velocity, 
and amount of CMF bone growth with somatic (body) 
maturation, with one exception: Growth of the neurocra-
nium starts soon after birth as a result of rapid perinatal 
expansion of the brain and reaches its adult size long 
before the remainder of the craniofacial skeleton. Con-
sequently, growth and morphogenesis of each unit of the 
CMF skeleton should be evaluated separately. Among 
the units, the mandible most closely tracks with somatic 
bone growth.49 

The maxillae originate as paired structures that 
ultimately give rise to the maxillary bones (highlighted 
in blue in Fig 2-4a); the maxilla will support the 
canines, premolars, and molars. The midline frontonasal 

prominence (highlighted in red in Fig 2-4a) eventually 
gives rise to the premaxilla, which supports the inci-
sors.50–52 The premaxillary and maxillary prominences, 
along with the lateral nasal prominences (highlighted in 
yellow in Fig 2-4a), fuse early in human development, at 
about the 9th week in utero (see arrows in Figs 2-4a to 
2-4c; schematized in Fig 2-4d). The suture between the 
premaxilla and the maxilla proper persists into adulthood 
in the region adjacent to the incisive canal. 

Growth of the facial prominences is not achieved in 
a uniform spatial manner; rather, it starts in the trans-
verse plane, followed by the sagittal plane, and finally 
the vertical plane. While transverse and sagittal growth 
rates remain virtually stable after 24 years of age, vertical 
growth of the maxilla continues at a slow rate. This is due 
to a downward displacement of the maxilla away from 
the cranium as it is “pushed” by the increase in size of the 
eyes/orbits, the nasal cavity, and the maxillary sinuses. 

As the prominences grow in size, mesenchymal 
cells form condensations in predetermined locations. 
In the maxilla, these condensations initiate intramem-
branous ossification, and the separate condensations 
corresponding to the maxilla, premaxilla, and mandible 
can be visualized using alizarin red/alcian blue whole-
mount staining in rodent embryos (Figs 2-4e to 2-4g). 
The condensations initially appear as separate islands but 
over time begin to coalesce and give rise to bone whose 
shape heralds their final morphology (see Fig 2-4g).

The mandible is derived from pairs of condensations 
that fuse in the midline to create the symphysis, thus 
yielding a single, continuous prominence by the first 
year of life (highlighted in green in Figs 2-4a to 2-4d). 
The mandible provides insertion surfaces for the muscles 
of mastication and supports the mandibular dentition. 
These two functions are performed by the basic parts 
of the mandible, which include the corpus (body) and 
the ascending ramus (branch). The mandible follows a 
similar chronology as the maxilla but a different spatial 
pattern. For example, the amount of sagittal growth of the 
mandible is greater than in the maxilla during puberty. 
This is due to endochondral growth at the condyle and 
the remodeling of the ramus to accommodate the erup-
tion of the second and third molars. Impacted mandib-
ular third molars are thought to be a consequence of a 
lack of sagittal growth. 
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Alveolar bone growth around teeth  
versus implants

Teeth erupt throughout life and bring along with them 
the surrounding alveolar bone. In cases of ankylosed 
teeth in young patients—or dental implants placed in any 
patient—localized alveolar bone growth does not occur. 
Around ankylosed teeth, this can result in infrapositioned 
(submerged) molars and incisors. This ankylosis-related 
malocclusion complicates subsequent prosthetic resto-
ration and predisposes the ankylosed dentition to peri-
odontal complications. In the esthetic region (ie, around 
maxillary incisors), no solution is considered optimal 
because extraction of the ankylosed tooth leaves behind 
a thin alveolar ridge, which is difficult to reconcile with 
bone grafting.53,54 Surgical luxation of the ankylosed tooth 
is largely unsatisfactory because the tooth ultimately 
ankyloses again,55 and surgical distraction of the anky-

losed tooth and surrounding bone is oftentimes unstable 
and unpredictable, leaving behind a damaged alveolar 
ridge.56 

Dental implants, like ankylosed teeth, do not passively 
erupt, and consequently, there is no physiologic growth of 
the alveolar ridge. In the case of implants, this constrained 
vertical growth of alveolar bone can lead to unesthetic 
and nonfunctional situations.57 Coupled with the natural 
continuous mesial drifting of teeth and vertical growth of 
the surrounding bone, a relative infraocclusion or labio-
version of the implant can occur, especially in patients 
with “long face” phenotypes.58

Disuse and postextraction atrophy of 
the alveolar ridge

The alveolar bone, its bundle bone component, and the 
tooth itself form a functional unit. Each unit is entirely 

FIG 2-4 Embryonic development of the maxillofacial skeleton. (a to c) SEM of an embryo showing condensations of cells in prom-
inences from an early stage (a), an intermediate stage (b), and a later stage (c). (d) Eventually, the sequence of growths and merges 
give rise to the adult maxillofacial skeleton. Arrow shown for reference. (e to g) Whole-mount skeletal staining of mouse embryo 
using alcian blue and alizarin red to identify cartilage and bone, respectively, at early (e), intermediate (f), and late (g) stages of fetal 
development. FNP, frontonasal prominence; MXP, maxillary prominence; LNP, lateral nasal prominence; MNP, mandibular prominence; 
Mx, maxilla; Mn, mandible; pre-Mx, premaxilla.
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dependent on the presence of the tooth, as alveolar bone 
forms with its eruption and regresses if the tooth is 
extracted. Although osteoporosis59,60 and aging61 impact 
alveolar bone height, it is the loss of teeth that most sig-
nificantly impacts alveolar bone resorption.59,62 Regardless 
of location, tooth extraction is rapidly followed by loss of 
horizontal and vertical ridge dimensions. For example,  
3 months after extraction, the horizontal dimension of the 
ridge is reduced by 30%, most pronounced at the buccal 
aspect, thus shifting the ridge toward the palatal/lingual 
aspect.63 One year after extraction, the buccal bone con-
tinues to recede to a point where it is located below the 
lingual/palatal crest.63 

The reason for rapid alveolar ridge resorption follow-
ing tooth extraction is not entirely clear. A commonly 
employed explanation for such a radical tissue loss is 
disuse atrophy, that is, the removal of a tooth cancels 
occlusal loading and strain in the bone.64 It must be 
pointed out, however, that the jaw is still in function, and 
loading still occurs on surrounding teeth after extraction 
of a single tooth. 

A study conducted in dogs argues for a disuse atro-
phy theory to explain alveolar ridge resorption follow-
ing tooth extraction. Here, the investigators suggested 
that once removed of its function by tooth extraction, 
the bundle bone that previously surrounded the tooth 
undergoes resorption; because the buccal wall is largely 
composed of bundle bone, the subsequent dimensional 
change is significant.65 While this is a reasonable expla-
nation for the loss in alveolar ridge height observed after 
tooth removal, it does not explain why the same nonfunc-
tional bundle bone simultaneously and directly promotes 
rapid new bone formation within the socket itself.66–68

Relationship between tooth extraction, 
alveolar ridge resorption, and socket 
healing

The clinical literature has clearly shown that socket heal-
ing and ridge resorption are related, but precisely how the 
bony filling of the extraction socket curtails the erosion 
of the alveolar ridge is not fully understood69–71 (reviewed 
in MacBeth et al72). In part, this is because most clinical 
studies that assess alveolar ridge dimensional changes (eg, 
Pelegrine et al73 and Camargo et al74) rarely report on the 
extent of bony fill in the extraction socket. Nonetheless, 
a variety of strategies have been tested for their ability 

to accelerate socket repair with the hopes that this will 
limit the extent of alveolar ridge resorption. These strate-
gies include autogenous bone grafting,73 allografting,75–77 
delivery of bone morphogenetic protein 2,78 platelet-rich 
fibrin,79 and more recently, the immune modulator 
Maresin 1.80 Most of these strategies show some improve-
ment in curtailing ridge resorption (reviewed in Avila 
Ortiz et al76; only one, however, also evaluated socket 
repair80). This lack of comparative data makes it diffi-
cult to establish a cause-and-effect relationship between 
socket repair and ridge resorption; nevertheless, there is 
a general sense that if the socket repairs faster, then ridge 
resorption will be slowed down. 

In a rodent preclinical model, socket fill and ridge 
resorption were both monitored simultaneously. Arioka 
et al found that the apical movement of the alveolar 
ridge proceeded until it reached the level of the bony 
fill in the socket; thereafter, the rate of ridge resorption 
slowed considerably.59 These indirect data align with 
clinical observations that the most rapid period of alve-
olar ridge resorption occurs within the first 50 days after 
tooth extraction,63,81 when the socket is still undergoing 
repair.67,68 

Effects of immediate postextraction  
implant placement on alveolar bone 
height

When an implant is inserted immediately after tooth 
extraction, it was previously presumed to counteract 
ridge resorption. However, Botticelli et al and Araujo et 
al showed that, to some extent following tooth extraction, 
the alveolar process will atrophy in response to altered 
functional demands and that an implant cannot substitute 
for the tooth in terms of preservation of alveolar bone 
height.65,82,83 

Incomplete Bone Repair Versus Bone 
Regeneration 

Limited or “ad integrum” wound healing 

When an organ is wounded, evolution has yielded two 
refined mechanisms to recover from injury: repair and 
regeneration. Repair is the restoration of tissue continuity, 
but not necessarily by the same cell type and tissue that 
existed prior to the injury. Regeneration, on the other 
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hand, fully restores both architecture and function of the 
injured tissues to a state that is indistinguishable from the 
pre-injury wound site.

Bone repair abilities

The vast majority of soft tissues heal by forming a scar 
tissue, which patches the wounded site but forfeits the 
original function of the injured organ. Soft tissues typ-
ically repair by a phenomenon called fibrosis, in which 
damaged tissues are invaded by fibroblasts that form a 
collagenous scar. In contrast, bone tissue bears some 
regenerative potential. To some extent, bone is capable 
of recovering from a wound to a state that is biologically 
and biomechanically indistinguishable from that derived 
from embryogenesis. The continuous process of remod-
eling helps integrate the newly formed bone into mature 
bone. These unique features of bone healing are limited, 
however, either by the amount of tissue that needs to be 
regenerated (ie, critical-sized defects) or by the location 
of the injured bone (ie, extrabony/vertical defects that are 
outside of the skeletal envelope).

In the typical fracture healing model, a series of four to 
six overlapping steps occur. Starting with the formation 
of a blood clot at the injury site, the hematoma harbors 
pericytes and mesenchymal cells that proliferate, differ-
entiate, and eventually secrete a fibrotic granulation 
tissue. The granulation tissue becomes a provisional 
matrix in intramembranous bones, while in long bones, 
the granulation tissue turns into a cartilaginous callus. 
The provisional matrix (or the callus of long bones) is 
then rapidly mineralized, forming woven bone, which 
later undergoes remodeling. The processes orchestrating 
the biology and biomechanics of bone healing remain 
unelucidated for the most part. Molecular signals are as 
for now investigated in a reductionist manner (ie, sepa-
rately and independently) although they most likely act 
synergistically, mimicking to some unknown extent the 
processes of bone embryology.

Biology underlying current regenerative 
therapeutic strategies

In cases where the endogenous regenerative potential is 
limited, a series of approaches have been developed to 
enhance new bone formation. These approaches fall into 

two general categories, involving either bone replace-
ment grafts (autogenous, allogeneic, xenogeneic, and 
alloplastic) or biologic factors (growth factors, enamel 
matrix derivatives, and platelet-rich fibrin matrix)—or 
combinations of the two. Barrier membranes (resorbable 
or nonresorbable) have been historically considered for 
regenerative treatments, but their mechanism of action 
is solely to exclude epithelia, coupled with the fact that 
the material is inert and does not contribute directly to 
tissue regeneration. Although these biologic and physical 
strategies have augmented atrophic edentulous ridges 
and enabled implant placement, they remain sensitive to 
multiple factors that are related to the patient, the defect 
anatomy, the clinician’s experience, and the procedure 
itself.

For example, tooth extraction typically leaves behind 
an osseous defect that at present can only be treated by 
bone grafting. The clinical use of bone grafts is covered 
elsewhere in this book; here, we discuss the mechanisms 
by which bone grafts contribute—or not—to restoration/
preservation of the alveolar ridge.

In general, when the bone graft is transplanted into 
a skeletal defect, a critical first step is engraftment and 
survival of the graft.84 This presupposes that the graft 
contains viable cells, which is only the case in autoge-
nous bone grafts that are carefully managed after harvest-
ing.85 Allogeneic (cadaveric) and xenogeneic (from other 
species) grafts are devoid of viable cells; consequently, 
this step of engraftment and survival is not applicable. 

Next, surviving cells must begin to express osteo-
genic proteins and then differentiate into osteoblasts that 
secrete a mineralized matrix and contribute directly to 
bone repair.86 In the case of allografts and xenografts, the 
cells that populate the scaffold arise from tissues adjacent 
to the graft (ie, the periosteum). This step is rate-limiting in 
bone grafting because both cell migration and cell differ-
entiation are passive processes.87,88 

All of these steps occur when the graft is harvested 
from a young patient. When the graft is harvested from 
an older patient, osteogenic gene expression of engrafted 
cells is significantly reduced.89 All subsequent steps, 
where cells differentiate into osteoblasts and secrete a 
mineralized matrix to heal the defect, are also reduced 
if the donor is elderly.89 The cause for this age-related 
decline in osteogenic differentiation appears to be associ-
ated with a decline in endogenous Wnt signaling.84,86,90–92 
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Indirect evidence also supports that when Wnt signaling 
is reduced, because of elevated sclerostin, the result is 
osteoporotic bone.93,94 

Allogeneic and xenogeneic bone grafts do not suffer 
from an age-related decline in efficacy, but they are 
complicated by the fact that there is a documented 
age-related deterioration in the number and/or function 
of stem/osteoprogenitor cells in the host.95–97 As previ-
ously shown (see Figs 2-1 and 2-2), osteoprogenitor cells 
reside in the periosteum, and this is the site of new bone 
formation, as shown by alkaline phosphatase activity 
(Figs 2-5a and 2-5b). When an allograft is placed, for 
example, onto the osseous floor of the maxillary sinus, 
then Runx2-positive osteoprogenitor cells are activated 
(Fig 2-5c) and eventually encase the xenograft with new 
bone (Fig 2-5d). Some data suggest that patients with 
osteoporosis98 and osteonecrosis have fewer99 and/or 
less active100 osteoprogenitor cells compared to healthy 
control groups (reviewed in Hernigou et al101). With this 
age-related decline in bone-forming capacity, and the fact 
that they are devoid of pro-osteogenic proteins, allografts 
and xenografts are slower to consolidate relative to young 
healthy patients.102,103 This delayed graft consolidation 
contributes to greater variability in clinical outcomes 
when allografts are used.104 

Osseointegration: When Bone Repair 
Incorporates a Foreign Body 

Functional ankylosis

The surgical placement of an implant consists of accessing 
the alveolar bone, where an osteotomy is drilled through 
the outer cortical layer and the diploë. Implant placement 
follows osteotomy drilling. Providing that a sufficient 
amount of mechanical stability is obtained at the time 
of insertion (ie, primary stability), osseointegration can 
ensue.

Primary stability is the result of the misfit established 
between the diameters of the osteotomy and the implant. 
The misfit enables the insertion of the implant’s thread 
tips within the bony walls of the osteotomy canal, thus 
creating mechanical retention. When the misfit is exces-
sive (ie, the implant diameter is significantly wider than 
the osteotomy), however, it generates excessively high 
strains in the peri-implant bone, causing microfractures 
that lead to osteocyte apoptosis; the net result is osse-
ous destruction followed by bone resorption and early 
implant failure.105 In contrast, when the misfit is insuffi-
cient, any load placed results in mobility of the implant 
and excessive strains in the interfacial blood clot between 
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FIG 2-5 Biology of maxillary sinus floor agumentation procedure. (a) Penta-
chrome histology of a healed extraction site following maxillary molar removal. 
(b) Alkaline phosphatase enzymatic reaction staining, for mineralization, local-
ized in the external and in the internal periostea of the intact maxillary sinus. 
(c) Runx2 immunostaining, for osteodifferentiation, labeling osteoprogenitor 
cells within the internal periosteum of the maxillary sinus. (d) Pentachrome 
staining of a xenograft-reconstructed sinus after consolidation of the graft; 
xenograft particles (yellow arrow) are engulfed in a network of newly formed 
bone. ip, internal periosteum; ep, external periosteum. Scale bars = 100 µm 
(a and d) and 20 µm (b and c).
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the implant and surrounding bone. These high strains 
prevent osteogenic differentiation of progenitor cells and 
eventually generate early implant failure with fibrous 
tissue encapsulation of the implant.106 

Essentially, osseointegration occurs in the “void” of 
the wells located between the tips of the threads that are 
inserted in bone. Following surgery, the wells initially 
fill with an osseous coagulum (ie, blood clot and surgi-
cal bone “debris”), which undergo the same differenti-
ation steps as observed in bone fracture healing but in 
an intramembranous fashion (ie, without the use of a 
cartilage template).107

The osseous coagulum resulting from the drilling 
of living bone is gradually resorbed and replaced with 
granulation tissue. The osteotomy walls of the diploë 
provide cellular components for the formation of new 
blood vessels and the colonization of leukocytes and 
mesenchymal cells. The granulation tissue is replaced 
with collagenous tissue (provisional matrix) that is filled 
with noncollagenous proteins. These proteins mature 
until they trigger and direct mineralization of the extra-
cellular matrix. The osteoid becomes mineralized by the 
nucleation and growth of mineral crystals. During the 
early post-implantation period, immature woven bone 
is rapidly formed, and tough mineralized collagen inter-
weaves with the threads of the screw-shaped implant and 
chemically attaches to the metal surface by direct bonding 
between calcium and titanium atoms.108 The immature 
woven bone located in the wells between the threads, as 
well as the mature bone harboring the thread tips, both 
will be remodeled. Eventually, these two bony compart-
ments will be lamellar, displaying reversion and cement 
lines, and will be indistinguishable from one another. 
The then-homogenous, mature alveolar bone that fully 
anchors the dental implant provides secondary stability.

Mucointegration: Generating mucosal 
attachment

Dental roots are sealed off from the septic oral cavity by 
their junctional epithelium. This key component of the 
supracrestal tissue attachment (biologic width) directly 
develops from the reduced enamel epithelium, as the 
tooth erupts in the oral cavity. The enamel epithelium is 
part of the enamel organ and is secreted by ameloblasts 
in the early development of the tooth buds. Ameloblasts, 

however, degenerate as the junctional epithelium prolif-
erates; therefore, if the junctional epithelium is lost after 
tooth extraction, it cannot be regenerated. Instead, when 
a tooth is extracted, its junctional epithelium is replaced 
by oral epithelium, which differs in many respects. Unlike 
the junctional epithelium, the oral epithelium is kerati-
nized, has lower mitotic activity, and has no expression 
of laminin 5, save for cells adjacent to the basal lamina.109

The mucosal interface of an implant placed in a healed 
site derives solely from this oral epithelium. Although 
oral epithelium is capable of providing some degree 
of epithelial adhesion to the abutment surface,110,111 its 
subepithelial connective fibers do not anchor in the metal 
surface, so the peri-implant mucosal seal inherently lacks 
some unique protective features of the dental supra crestal 
tissue. The maintenance of the peri-implant epithelium 
is fragile and all the more critical for preventing the 
initiation of peri-implant inflammatory diseases (eg, 
peri-implantitis).112–118 
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