Volume 1: BASIC CONCEPTS

Part 1: Anatomy

1 Anatomy and Histology of Periodontal Tissues, 3
 Dieter D. Bosshardt, Jan Lindhe, Niklaus P. Lang, and Maurício Araújo
 Introduction, 3
 Gingiva, 5
 Anatomy, 5
 Histology, 8
 Periodontal ligament, 26
 Root cementum, 31
 Bone of the alveolar process, 35
 Macroscopic anatomy, 35
 Microscopic anatomy, 37
 Blood supply of the periodontium, 41
 Lymphatic system of the periodontium, 46
 Nerves of the periodontium, 47
 Acknowledgment, 49

2 Bone as a Living Organ, 50
 Darnell Kaigler and William V. Giannobile
 Introduction, 50
 Development, 50
 Intramembranous bone formation, 50
 Endochondral bone formation, 52
 Structure, 52
 Osseous tissue, 52
 Periosteal tissue, 54
 Bone marrow, 56
 Function, 57
 Mechanical properties, 57
 Metabolic properties, 58
 Skeletal homeostasis, 59
 Healing, 59
 Disorders, 61
 Conclusion, 66
 Acknowledgments, 66

3 The Edentulous Ridge, 68
 Maurício Araújo and Jan Lindhe
 Clinical considerations, 68
 Remaining bone in the edentulous ridge, 71
 Classification of remaining bone, 72
 Topography of the alveolar process, 73
 From an alveolar process to an edentulous ridge, 74
 Intra-alveolar processes, 74
 Extra-alveolar processes, 81
 Topography of the edentulous ridge: summary, 84

4 The Mucosa at Teeth and Implants, 86
 Jan Lindhe, Tord Berglundh, Anton Sculean, and Niklaus P. Lang
 Gingiva, 86
 Dimensions of the supracrestal attachment, 86
 Dimensions of the buccal tissue, 86
 Dimensions of the interdental papilla, 88
 Peri-implant mucosa, 88
 Dimensions of the supracrestal attachment, 89
 Structure and composition, 93
 Vascular supply, 94
 Probing gingiva and peri-implant mucosa, 95
 Dimensions of the buccal soft tissue at implants, 96
 Dimensions of the papilla between teeth and implants, 98
 Dimensions of the “papilla” between adjacent implants, 99

5 Osseointegration, 103
 Niklaus P. Lang, Tord Berglundh, and Dieter D. Bosshardt
 Introduction, 103
 Implant installation, 103
 Tissue injury, 103
 Wound healing, 104
 Cutting and non-cutting implants, 104
 Process of osseointegration, 107
 Morphogenesis of osseointegration, 111
 Overall pattern of implant integration, 111
 Biopsy sample observations, 112

Part 2: Epidemiology

6 Epidemiology of Periodontitis, 119
 Panos N. PappaPanou and Ryan T. Demmer
 Introduction, 119
 Methodological issues, 119
 Examination methods: index systems, 119
 Assessment of inflammation of the periodontal tissues, 120
 Assessment of loss of periodontal tissue support, 120
Contents

Radiographic assessment of alveolar bone loss, 121
Assessment of periodontal treatment needs, 121
Periodontitis “case definition” in epidemiologic studies, 122
Prevalence of periodontitis, 124
Periodontitis in adults, 124
Periodontitis in children and adolescents, 127
Periodontitis and tooth loss, 132
Risk factors for periodontitis, 132
Introduction: definitions, 132
Measures of disease occurrence, 132
Measures of association, 133
Causal inference and causal models, 134
Non-modifiable background factors, 137
Environmental, acquired, and behavioral factors, 140
Concluding remarks, 146

7 Epidemiology of Peri-Implant Diseases, 160
Jan Derks, Cristiano Tomasi, and Tord Berglundh
Introduction, 160
Disease definition, 160
Case definition, 161
Period-implant health, 161
Period-implant mucositis, 162
Period-implantitis, 162
Examination methods, 162
Prevalence of peri-implant diseases, 163
Extent and severity of peri-implantitis, 163
Peri-implantitis and implant loss, 165
Etiology of peri-implant diseases, 165
Risk factors for peri-implant diseases, 166
Period-implant mucositis, 166
Period-implantitis: risk factors related to the patient, 167
Period-implantitis: risk factors related to the implant, 168
Concluding remarks, 169

Part 3: Microbiology

8 Dental Biofilms and Calculus, 175
Philip D. Marsh, Mariano Sanz, Niklaus P. Lang, and Dieter D. Bossardt
Introduction, 175
The human microbiome, 175
The oral microbiome, 176
The mouth as a microbial habitat, 176
Methods to determine the composition and function of the oral microbiome, 178
The development and composition of the oral microbiome, 178
Dental biofilm formation, 179
Conditioning film formation, 179
Reversible and more permanent attachment, 179
Co-adhesion, 181
Plaque maturation, 181
Detachment, 182
The significance of a biofilm and community lifestyle for microorganisms, 182
Benefits to the host of a resident oral microbiota., 183
Biofilms on implant surfaces, 184
Dental calculus, 186
Clinical appearance and distribution, 187
Calculus formation and structure, 188
Attachment to tooth surfaces and implants, 189
Calculus composition, 191
Clinical implications, 191
Conclusions, 192

9 Periodontal and Peri-Implant Infections, 196
Mike Curtis, Lisa Heitz-Mayfield, and Mariano Sanz
Periodontal infections, 196
Introduction, 196
Microbiological techniques to study the periodontal microbiota, 198
Periodontal bacteria and virulence, 207
Microbial pathogenesis of periodontal disease, 210
Peri-implant infections, 212
Introduction, 212
Peri-implant biofilm formation, 213
Surface characteristics of the implant/abutment, 213
Local oral environment, 217
Oral hygiene and accessibility, 218
Microbiota associated with peri-implant mucosal health, 218
Microbiota associated with peri-implant infections, 221
Periodontal and peri-implant microbiomes in health and disease, 223
Patients at risk for peri-implant infections, 224
Acknowledgment, 225

Part 4: Host–Parasite Interactions

10 Pathogenesis of Gingivitis and Periodontitis, 235
Gregory J. Seymour, Tord Berglundh, and Leonardo Trombelli
Introduction, 235
Gingivitis, 237
Development of the homeostatic lesion, 237
The epithelial barrier, 241
Factors influencing the pathogenesis of gingivitis, 242
Vascular response, 242
Cellular response, 243
Repair potential, 243
Periodontitis, 244
Histopathology of periodontitis, 244
B cells in periodontitis, 246
Macrophages in periodontitis (M1 and M2), 248
Conversion of gingivitis to periodontitis, 248
The Th1/Th2 paradigm, 249
Suppression of cell-mediated immunity, 249
T cells and homeostasis, 249
Cytokine profiles, 249
CD8 T cells, 250
Control of the Th1/Th2 balance, 250
Genetics, 250
Innate immune response, 250
Nature of the antigen, 251
Nature of the antigen-presenting cell, 251
Hypothalamic–pituitary–adrenal axis and the sympathetic nervous system, 252
Treg/Th17 axis, 252
Autoimmunity, 254
Natural killer T cells, 254
B-cell subsets, 254
Connective tissue matrix destruction, 255
Bone loss, 255
Conclusion, 256
11 Systemic and Environmental Modifying Factors, 263
Evanthia Lalla and Panos N. Papapanou
Introduction, 263
Diabetes mellitus, 263
Mechanisms underlying the effect of diabetes on periodontitis, 263
Clinical presentation of the periodontal patient with diabetes, 266
Concepts related to patient management, 266
Tobacco smoking, 272
Mechanisms underlying the effect of smoking on periodontitis, 272
Clinical presentation of the periodontal patient who smokes, 273
Concepts related to patient management, 273
Obesity and nutrition, 276
Osteoporosis, 277
Stress, 278

12 Genetic Susceptibility to Periodontal Disease: New Insights and Challenges, 288
Arne S. Schaefer, Ubele van der Velden, Marja L. Laine, and Bruno G. Loos
Introduction, 288
Evidence for the role of genetics in periodontitis, 289
Heritability, 290
Heritability of periodontitis among young people, 291
Heritability of periodontitis in adults, 291
Gene mutation of major effect on human disease and its association with periodontitis, 296
Identification of genetic risk factors of periodontitis, 296
Sialic acid binding Ig-like lectin 5 (SIGLEC5) and other potential variants, 298
Defensin alpha-1 and -3 (DEFA1A3), 300
CDKN2B antisense RNA 1 (CDKN2B-AS1), 300
Miscellaneous genetic associations with periodontitis, 300
Epigenetic signatures, 300
From genetic disease susceptibility to improved oral care, 301

Part 5: Trauma from Occlusion

13 Effect of Load on Periodontal and Peri-Implant Tissues, 307
Jan Lindhe, Niklaus P. Lang, and Tord Berglundh
INTRODUCTION, 307
PART I: PERIODONTAL TISSUES, 307
Definition and terminology, 307
Occlusal trauma and plaque-associated periodontal disease, 308
Clinical trials, 308
Preclinical studies, 309
Plaque-associated periodontitis, 312
Conclusion, 314
PART II: PERI-IMPLANT TISSUES, 315
Orthodontic loading and alveolar bone, 315
Bone reactions to functional loading, 317
Excessive occlusal load on implants, 318
Static and cyclic loads on implants, 321
Load and loss of osseointegration, 322
Masticatory occlusal forces on implants, 322
Tooth-implant supported reconstructions, 324

Part 6: Periodontal Pathology

14 Non-Plaque-Induced Gingival Diseases, 331
Palle Holmstrup and Mats Jontell
Introduction, 331
Genetic/developmental disorders, 332
Hereditary gingival fibromatosis, 332
Specific infections, 333
Bacterial origin, 333
Viral origin, 333
Fungal origin, 337
Inflammatory and immune conditions, 339
Hypersensitivity reactions, 339
Autoimmune diseases of skin and mucous membranes, 342
Granulomatous inflammatory lesions (orofacial granulomatosis), 349
Reactive processes, 351
Epulis, 351
Neoplasms, 352
Premalignant (potentially malignant), 352
Malignancy, 353
Endocrine, nutritional, and metabolic diseases, 356
Vitamin deficiencies, 356
Traumatic lesions, 356
Physical/mechanical trauma, 357
Chemical (toxic) burn, 358
Thermal insults, 359
Gingival pigmentation, 359

15 Plaque-Induced Gingivitis, 368
Leonardo Trombelli, Roberto Farina, and Dimitris N. Tatakis
Clinical features of plaque-induced gingivitis, 368
Diagnostic criteria to assess a gingivitis lesion, 370
Diagnostic criteria to define and grade a gingivitis case, 373
Epidemiology of gingivitis, 374
Impact of gingivitis on patient-reported quality of life, 376
Impact of gingivitis on systemic inflammation, 376
Prognostic value of gingivitis, 378
Potential modifying factors of plaque-induced gingivitis, 378
Smoking, 378
Sex steroid hormones, 380
Malnutrition, 380
Specific systemic diseases and conditions, 380
Systemic drugs, 383
Local factors, 383
Prevention and management of plaque-induced gingivitis, 384

16 Current Classification of Periodontitis, 390
Panos N. Papapanou, Mariano Sanz, and Kenneth Kornman
Introduction, 390
A brief historical perspective: recently used periodontitis classification systems, 390
Need for the new classification, 392
Key concepts and ground rules of the new classification of periodontitis, 392
Assessment of Stage, 392
Assessment of grade, 396
Implementation of the current classification: clinical examples, 398
17 Effect of Periodontal Diseases on General Health: Periodontal Medicine, 409
Francesco D’Aiuto, Filippo Graziani, Panos Papapanou, and James Beck

Introduction, 409
Evidence of common biologic mechanisms, 411
Oral microbiome, 412
Systemic inflammation, 412
Atherosclerotic vascular disease, 413
Biologic mechanisms, 413
Epidemiologic evidence, 413
Diabetes mellitus, 422
Biologic mechanisms, 422
Epidemiologic evidence, 423
Adverse pregnancy outcomes, 425
Biologic mechanisms, 425
Epidemiologic evidence, 425
Chronic renal disease, 426
Biologic mechanisms, 426
Epidemiologic evidence, 427
Cognitive decline/dementia, 428
Biologic mechanisms, 428
Epidemiologic evidence, 428
Cancer, 429
Biologic mechanisms, 429
Epidemiologic evidence, 429
Conclusion, 430

18 Periodontitis and Systemic Diseases (Cardiovascular Disease and Diabetes): Biological Perspectives for Oral/Periodontal Implications, 439
Alpdogan Kantarci and Hatice Hasturk

Introduction, 439
Plausibility of periodontal disease as a risk factor for diseases at distant tissues, 440
Plausibility of systemic dissemination of oral bacteria, 441
Inflammatory processes as a link between periodontal and systemic diseases, 442
Biologic plausibility of a link between periodontal diseases and cardiovascular diseases, 443
Microbial factors, 443
Host factors, 446
Summary, 448
Biologic plausibility of a link between periodontal diseases and diabetes, 449
Host factors, 449
Microbial factors, 451
Summary, 454
Conclusion, 455

19 Abscesses, Necrotizing Lesions of the Periodontium, and Endo-Periodontal Lesions, 461
David Herrera and Magda Feres

Introduction, 461
Abscesses in the periodontium, 462
Periodontal abscess, 462
Classification, 462
Etiology, pathogenesis, and histopathology, 463
Microbiology, 464

Diagnosis, 466
Differential diagnosis, 467
Why periodontal abscesses are relevant, 468
Necrotizing periodontal diseases, 469
What are necrotizing periodontal diseases, 469
Classification, 469
Etiology, pathogenesis, and histopathology, 470
Predisposing factors, 470
Diagnosis, 472
Necrotizing gingivitis, 472
Necrotizing periodontitis, 473
Necrotizing stomatitis, 473
Why necrotizing periodontal diseases are relevant, 473
Endo-periodontal lesions, 475
Classification, 475
Etiology, 476
Microbiology, 476
Pathogenesis and histopathology, 478
Risk factors, 479
Clinical presentation and diagnosis, 479
Summary, 481

Part 7: Peri-Implant Pathology

20 Peri-Implant Mucositis and Peri-Implantitis, 491
Tord Berglundh, Jan Lindhe, and Niklaus P. Lang

Introduction, 491
Healthy peri-implant mucosa, 491
Peri-implant mucositis, 492
Clinical features and diagnosis, 492
Clinical models, 493
Preclinical models, 494
Peri-implantitis, 495
Clinical features and diagnosis, 495
Human biopsy material, 496
Preclinical models, 498
Conclusion, 501

Part 8: Tissue Regeneration

21 Periodontal Wound Healing and Regeneration, 505
Darnell Kaigler, Giulio Rasperini, Saso Ivanovski, and William V. Giannobile

Introduction, 505
Wound healing: Outcomes and definitions, 506
Wound healing biology, 508
Phases of wound healing, 508
Factors that affect healing, 509
Periodontal wound healing, 509
Healing after periodontal surgery, 511
Advanced regenerative approaches to periodontal tissue reconstruction, 512
Regenerative surgery, 512
Guided tissue regeneration, 513
Clinical applications of growth factors for use in periodontal regeneration, 514
Cell therapy for periodontal regeneration, 515
Gene therapeutics for periodontal tissue repair, 516
Three-dimensional printed scaffolds for periodontal regeneration, 516
Conclusion, 516
Acknowledgments, 519
Part 9: Examination Protocols

22 Examination of Patients, 525
Giovanni E. Salvi, Tord Berglundh, and Niklaus P. Lang
Patient’s history, 525
Chief complaint and expectations, 525
Social and family history, 525
Dental history, 526
Oral hygiene habits, 526
History of tobacco use, 526
Medical history and medications, 526
Genetic testing before periodontal and implant therapy, 526
Signs and symptoms of periodontal diseases and their assessment, 526
Gingiva, 528
Keratinized mucosa at implant recipient sites, 529
Periodontal ligament and the root cementum, 529
Alveolar bone, 535
Diagnosis and classification of periodontitis, 535
Gingivitis, 536
Periodontitis, 536
Oral hygiene status, 538
Additional dental examinations, 538
Conclusion, 538

23 Diagnostic Imaging of the Periodontal and Implant Patient, 541
Michael M. Bornstein, Kuofeng Hung, and Dorothea Dagassan-Berndt
Introduction, 541
Basic principles of diagnostic imaging in dental medicine, 541
Modalities, 541
Radiation hazards and radiation dose protection, 547
Diagnostic imaging in periodontology, 550
General recommendations, 550
Future trends and developments, 556
Diagnostic imaging in oral implantology, 557
General recommendations for implant treatment planning purposes, 557
Recommendations during and after implant placement (follow-up), 561
Recommendations for special indications and techniques, 565
Future trends and developments, 568
Conclusion and future outlook, 569

24 Patient-Specific Risk Assessment for Implant Therapy, 572
Giovanni E. Salvi and Niklaus P. Lang
Genetic susceptibility traits, 579
Conclusion, 579

Part 10: Treatment Planning Protocols

25 Treatment Planning of Patients with Periodontal Diseases, 587
Giovanni E. Salvi, Niklaus P. Lang, and Pierpaolo Cortellini
Introduction, 587
Treatment goals, 587
Systemic phase (including smoking counseling), 588
Initial phase (hygienic phase, infection control), 588
Corrective phase (additional therapeutic measures), 588
Screening for periodontal disease, 588
Basic periodontal examination, 588
Diagnosis, 589
Treatment planning, 589
Initial treatment plan, 589
Pretherapeutic single tooth prognosis, 590
Case presentations, 592
Case presentation 1, 592
Case presentation 2, 596
Conclusion, 605

26 Systemic Phase of Therapy, 609
Niklaus P. Lang, Iain Chapple, Christoph A. Ramseier, and Hans-Rudolf Baur
Introduction, 609
Protection of the dental team and their patients against infectious diseases, 609
Protection of the patient’s health, 610
Prevention of complications, 610
Infective endocarditis and its prevention, 610
Bleeding, 614
Cardiovascular incidents, 614
Allergic reactions and drug interactions, 614
Systemic diseases, disorders, or conditions influencing pathogenesis and healing potential, 614
Specific medications: bisphosphonates as a threat to implant therapy, 615
Control of anxiety and pain, 615
Tobacco use cessation counseling, 616
Tobacco use brief intervention, 616
Conclusion, 617

Part 11: Initial Periodontal Therapy (Infection Control)

27 Oral Hygiene Motivation, 621
Jeanie E. Suvan and Christoph A. Ramseier
Health behavior change counseling in periodontal care, 621
The challenge, 622
Clinician–patient communication, 622
Evidence for health behavior change counseling, 624
Evidence in general health care, 624
Evidence in periodontal care, 624
Understanding health behavior change counseling, 625
 General principles, 626
 Giving advice, 626
 Agenda setting, 627
 Readiness ruler, 627
 Goal setting, planning, and self-monitoring, 628
 Technology to facilitate behavior change, 628
The patient activation fabric, 628
 Band I: establish rapport, 629
 Band II: information exchange, 629
 Band III: closing, 630
 Ribbon A: communication style, 630
 Ribbon B: health behavior change tools, 630
Case examples, 630
 Oral hygiene motivation I, 630
 Oral hygiene motivation II, 632
Conclusion, 633

28 Mechanical Supragingival Plaque Control, 635
 Fridus van der Weijden and Dagmar Else Slot
Importance of supragingival plaque removal, 635
Self-performed plaque control, 637
 Brushing, 637
 Motivation, 638
 Oral hygiene instruction, 638
 Oral mHealth, 638
Toothbrushing, 639
 Manual toothbrushes, 639
 Electric (powered) toothbrushes, 646
 Electrically active (ionic) toothbrush, 649
Interdental cleaning, 650
 Dental floss and tape, 651
 Woodsticks, 652
 Rubber/elastomeric interdental cleaning sticks, 653
 Interdental brushes, 654
 Single-tufted/end-tufted brushes, 655
 Dental water jets/oral irrigators, 655
 Tongue cleaners, 657
 Foam brushes, swabs, or tooth tewelettes, 658
Dentifrices, 658
Side effects, 659
 Brushing force, 659
 Toothbrush abrasion, 660
 Toothbrush contamination, 662
Importance of instruction and motivation in mechanical plaque control, 662
 First session, 664
 Second session, 664
 Third and subsequent sessions, 664
Conclusion, 664
Acknowledgments, 664

29 Chemical Dental Biofilm Control, 680
 David Herrera and Jorge Serrano
Rationale for supragingival biofilm control, 680
Oral hygiene products, 681
 Mechanical biofilm control, 681
 Limitations of mechanical biofilm control, 681
Chemical biofilm control, 682
Mechanism of action, 682
 Categories of formulations, 682
 Ideal features, 682
Evaluation of activity of agents for chemical biofilm control, 683
 In vitro studies, 683
 In vivo study models, 684
 Home-use clinical trials, 685
Active agents, 686
 Antibiotics, 686
 Enzymes: disruption of the biofilm, 686
 Enzymes: enhancement of the host defences, 686
 Amine alcohols, 686
 Detergents, 686
 Oxygenating agents, 687
 Metal salts: zinc salts, 687
 Metal salts: stannous fluoride, 687
 Metal salts: stannous fluoride with amine fluoride, 688
 Other fluorides, 688
 Natural products, 688
 Essential oils, 688
 Triclosan, 689
 Bisbiguanides, 691
 Quaternary ammonium compounds, 693
 Hexetidine, 694
 Povidone iodine, 694
 Other evaluated products, 694
Future approaches, 695
Delivery formats, 695
 Mouth rinses, 695
 Dentifrices, 695
 Gels, 696
 Chewing gums, 696
 Varnishes, 696
 Lozenges, 696
 Irritators, 696
 Sprays, 696
 Sustained-release devices, 696
Selection of delivery format, 696
Clinical indications for chemical plaque control:
 selection of agents, 697
 Single use, 697
 Short-term use for the prevention of dental biofilm formation, 698
 Short-term use for therapy, 698
 Long-term use for the prevention of dental biofilm formation, 699
 Long-term use for the prevention of other oral conditions, 700
Conclusion, 701

30 Non-Surgical Therapy, 716
 Jan L. Wennström and Cristiano Tomasi
Introduction, 716
Goal of non-surgical pocket/root instrumentation, 716
Debridement, scaling, and root planing, 717
Instruments used for non-surgical pocket/root debridement, 717
 Hand instruments, 717
 Sonic and ultrasonic instruments, 720
 Air-polishing devices, 721
 Ablative laser devices, 721
Approaches to subgingival debridement, 723
 Full-mouth instrumentation protocols, 723
 Full-mouth disinfection protocols, 723
Clinical outcomes following various approaches to pocket/root instrumentation, 723
Microbiologic outcomes following various approaches to pocket/root instrumentation, 725
Considerations in relation to selection of instruments and treatment approach, 726
Selection of instruments, 726
Selection of treatment approach, 727
Re-evaluation following initial non-surgical periodontal treatment, 728
Efficacy of repeated non-surgical pocket/root instrumentation, 729

31 Treatment of Acute Periodontal and Endo-Peiodontal Lesions, 733
David Herrera and Magda Feres
Introduction, 733
Treatment of periodontal abscesses, 733
Control of the acute condition, 733
Re-evaluation of treatment outcomes, 735
Management of the pre-existing and/or residual lesion, 735
Treatment of necrotizing periodontal diseases, 735
Treatment of necrotizing periodontal diseases in moderately and/or short-term immunocompromised patients, 736
Treatment of necrotizing periodontal diseases in continuously and severely immunocompromised patients, 737
Treatment of endo-periodontal lesions, 737
Prognosis of teeth with endo-periodontal lesions, 738
Should endo-periodontal lesions with hopeless or poor prognosis be treated?, 739
Steps in the management of an endo-periodontal lesion, 739

Part 12: Additional Therapy

32 Periodontal Surgery, 751
Mariano Sanz, Jan L. Wennström, and Filippo Graziani
Introduction, 751
Techniques in periodontal surgery (historical perspective), 752
Gingivectomy procedures, 752
Flap procedures, 753
Apically repositioned flap, 755
Modified Widman flap, 757
Distal wedge procedures, 758
Osseous surgery, 760
Techniques in periodontal surgery (current perspective), 763
Objectives of surgical treatment, 763
Indications for surgical treatment, 764
Contraindications for periodontal surgery, 765
Selection of the surgical technique, 766
Instruments used in periodontal surgery, 767
Step by step flap surgical procedure, 770
Specific surgical interventions for papilla management, 779
Papilla preservation flap, 779
Modified papilla preservation technique, 779
Simplified papilla preservation flap, 781
Minimally invasive surgical techniques, 782
Outcomes of surgical periodontal therapy, 784
Histological healing, 784
Clinical outcomes of surgical periodontal therapy, 786
Factors affecting clinical healing, 790
Conclusion, 791

33 Treatment of Furcation-Involved Teeth, 794
Søren Jepsen, Peter Eickholz, and Luigi Nibali
Anatomy, 794
Diagnosis of furcation involvement, 796
Clinical diagnosis of furcation involvement, 796
Classification of furcation involvement, 797
Distinction between class II and class III furcation involvement, 798
The vertical dimension of furcation involvement, 798
Radiographic diagnosis of furcation involvement, 799
Furcations and risk of tooth loss, 800
Treatment options, 801
Non-surgical treatment, 801
Corrective surgery in furcation defects, 802
Decision making (clinical recommendations) in the surgical treatment of class II and III furcation defects, 813
Long-term maintenance of teeth with furcation involvement, 815
Tooth loss by vertical furcation component, 816

34 Non-Surgical Therapy of Peri-Implant Mucositis and Peri-Implantitis, 820
Lisa Heitz-Mayfield, Giovanni E. Salvi, and Frank Schwarz
Introduction, 820
Non-surgical therapy of peri-implant mucositis, 821
Assessment of the implant-supported prosthesis, 822
Oral hygiene measures for self-performed biofilm removal, 823
Professional mechanical debridement (supra- and submucosal calculus and biofilm removal), 825
Adjunctive measures for peri-implant mucositis treatment, 825
Non-surgical therapy of peri-implantitis, 827
Professional mechanical debridement, 828
Conclusion, 832

35 Surgical Treatment of Peri-Implantitis, 835
Tord Berglundh, Jan Derks, Niklaus P. Lang, and Jan Lindhe
Introduction and goals of surgical therapy, 835
Implant surface decontamination, 837
Pocket elimination/reduction procedures, 839
Preclinical data, 840
Clinical data, 841
Reconstructive procedures, 843
Preclinical data, 843
Clinical data, 843
Conclusion, 846

36 Systemic Antibiotics in Periodontal Therapy, 848
Magda Feres and David Herrera
Introduction, 848
Microbiological basis for periodontal treatment, 849
The long search for periodontal pathogens and the concept of beneficial species, 849
Understanding the target: bacterial biofilms, 850
Rationale for the use of adjunctive systemic antibiotics in periodontal treatment, 852
Mechanical periodontal therapy and its limitations, 852
Local versus systemic antimicrobials, 853
Systemic antibiotics in periodontal therapy, 853
Should systemic antimicrobial therapy be aimed at specific pathogens?, 853
Which antimicrobial(s) would provide the most predictable results? A historical perspective, 854
Which antimicrobial(s) would provide the most predictable results? Weighting the evidence: clinical outcomes in randomized clinical trials and systematic reviews, 856
Which antimicrobial(s) would provide the most predictable results? Microbiological impact, 857
Which subjects would benefit most from systemic antimicrobial therapy?, 860
Protocols of use of systemic antimicrobials in periodontics, 862
Use of systemic antimicrobials: associated risks, 864
Adverse events/reactions, 864
Emergence of resistant strains/global increase in antibiotic resistance, 864
Concluding remarks and recommendations for clinical practice, 865

37 Local Antimicrobial Delivery for the Treatment of Periodontitis and Peri-Implant Diseases, 876
Maurizio S. Tonetti and David Herrera
General principles of local drug delivery, 876
Rationale of local drug delivery, 876
Subgingival pharmacokinetics, 877
Development of subgingival delivery devices, 878
Antimicrobial effects of subgingival delivery devices, 878
Local antimicrobial delivery for the treatment of periodontitis, 880
Efficacy of subgingival delivery devices, 880
Indications for locally delivered, sustained-release antimicrobials, 885
Summary, 887
Local antimicrobial delivery for the treatment of peri-implant diseases, 887
Clinical rationale, 887
Efficacy of subgingival delivery devices in peri-implant diseases, 887
Indications for locally delivered, sustained-release antimicrobials in peri-implantitis, 887
Summary, 888

Part 13: Reconstructive Therapy

38 Regenerative Periodontal Therapy, 895
Pierpaolo Cortellini and Maurizio S. Tonetti
Introduction, 895
Classification and diagnosis of periodontal osseous defects, 895
Clinical indications, 896
Long-term effects and benefits of regeneration, 898
Evidence for clinical efficacy and effectiveness, 903
Patient, defect, and tooth prognostic factors, 907
Patient factors, 907
Defect factors, 908
Tooth factors, 909
Factors affecting the clinical outcomes in furcations, 910
Relevance of the surgical approach, 910
Surgical approach to intrabony defects, 912
Papilla preservation flaps, 912
Postoperative regimen, 932
Postoperative period and local side effects, 934
Surgical and postsurgical morbidity, 934
Barrier materials for regenerative surgery, 936
Non-bioresorbable materials, 936
Bioresorbable materials, 937
Membranes for intrabony defects, 937
Membranes for furcation involvement, 939
Bone replacement grafts, 946
Grafts for intrabony defects, 946
Grafts for furcation involvement, 946
Biologically active regenerative materials, 946
Growth factors for intrabony defects, 947
Growth factors for furcation involvement, 947
Enamel matrix derivatives for intrabony defects, 948
Enamel matrix derivatives for furcation involvement, 949
Combination therapy, 949
Combination therapy for intrabony defects, 949
Combination therapy for furcation involvement, 953
Root surface biomodification, 954
Clinical potential and limits for regeneration, 954
Clinical strategies, 955
Clinical flowcharts, 958
Conclusion, 960

39 Mucogingival Therapy: Periodontal Plastic Surgery, 970
Mariano Sanz, Jan L. Wennström, Massimo de Sanctis, and Anton Sculean
Introduction, 970
Mucogingival conditions, 971
Mucogingival condition without gingival recession, 972
Gingival dimensions and periodontal health, 972
Gingival augmentation, 974
Mucogingival condition with gingival recessions, 979
Diagnosis of gingival recessions, 984
Treatment of gingival recessions, 987
Root coverage procedures, 988
Pedicle grafts, 990
Pedicle soft tissue graft procedures combined with a barrier membrane, 996
Healing of pedicle soft tissue grafts over denuded root surfaces, 996
Use of free soft tissue graft procedures, 999
Tunnel approaches for the treatment of gingival recessions, 1004
The use of soft tissue substitutes for the treatment of gingival recessions, 1009
Healing of free soft tissue grafts, 1009
Selection of surgical procedure for root coverage, 1010
Clinical outcomes of root coverage procedures, 1010
Factors influencing the degree of root coverage, 1011
Interdental papilla reconstruction, 1013
Surgical techniques, 1013
Crown-lengthening procedures, 1015
Excessive gingival display, 1015
Exposure of sound tooth structure, 1016
Selection of the crown lengthening procedure, 1017
Gingivectomy, 1017
Apically positioned flaps, 1017
Forced tooth eruption, 1020
Gingival preservation at ectopic tooth eruption, 1022
Part 14: Surgery for Implant Installation

40 Timing of Implant Placement, 1035
Christoph H.F. Hämmerle, Maurício Araújo, and Jan Lindhe

Introduction, 1035
Type 1 placement as part of the same surgical procedure as and immediately following tooth extraction, 1036
Ridge alterations in conjunction with implant placement, 1036
Stability of implant, 1043
Type 2 placement: completed soft tissue coverage of the tooth socket, 1045
Type 3 placement: substantial bone fill has occurred in the extraction socket, 1046
Type 4 placement: alveolar process is healed following tooth loss, 1046
Clinical concepts, 1046
Aim of therapy, 1047
Success of treatment and long-term outcomes, 1049
Conclusion, 1049

Part 15: Reconstructive Ridge Therapy

41 Ridge Augmentation Procedures, 1055
Fabio Vignoletti, Darnell Kaigler, William V. Giannobile, and Mariano Sanz

Introduction: principles of alveolar bone regeneration, 1055
Promoting primary wound closure, 1056
Enhancing cell proliferation and differentiation, 1057
Protecting initial wound stability and integrity, 1057
Treatment objectives, 1058
Diagnosis and treatment planning, 1058
Patient, 1058
Defect classification, 1059
Bone augmentation therapies, 1060
Biologic principles of guided bone regeneration, 1060
Regenerative materials, 1061
Barrier membranes, 1061
Bone grafts and bone and soft tissue substitutes, 1062
Evidence-based results for ridge augmentation procedures, 1064
Alveolar ridge preservation, 1064
Bone regeneration at implants into fresh extraction sockets, 1065
Horizontal ridge augmentation, 1067
Ridge splitting/expansion, 1069
Vertical ridge augmentation, 1070
Emerging technologies, 1072
Growth factors, 1072
Cell therapy, 1073
Scaffolding matrices to deliver genes, proteins, and cells, 1074
Future perspectives, 1076
Conclusion, 1077
Acknowledgments, 1077

42 Maxillary Sinus Floor Augmentation, 1087
Gustavo Avila-Ortiz, Bjarni E. Pjetursson, and Niklaus P. Lang

The maxillary sinus, 1087
Options for the rehabilitation of the posterior edentulous maxilla, 1092
Maxillary sinus floor augmentation techniques, 1097
Surgical modalities, 1097
Presurgical examination and care, 1099
Healing dynamics, 1100
Maxillary sinus floor augmentation: lateral window approach, 1110
Maxillary sinus floor augmentation: transalveolar approach, 1112
Summary, 1117

Part 16: Occlusal and Prosthetic Therapy

43 Tooth-Supported Fixed Dental Prostheses, 1125
Jan Lindhe, Niklaus P. Lang, and Sture Nyman

Clinical symptoms of trauma from occlusion, 1125
Angular bony defects, 1125
Increased tooth mobility, 1125
Progressive (increasing) tooth mobility, 1125
Clinical assessment of tooth mobility (physiologic and pathologic tooth mobility), 1125
Treatment of increased tooth mobility, 1127
Situation 1, 1127
Situation 2, 1128
Situation 3, 1129
Situation 4, 1131
Situation 5, 1133

44 Implant-Supported Fixed Dental Prostheses, 1136
Ronald E. Jung, Franz J. Strauss, and Daniel S. Thoma

Introduction, 1136
Indications for implants in the posterior dentition, 1137
Therapeutic concepts at sites with sufficient bone quantity, 1137
Therapeutic concepts at sites with insufficient bone quantity, 1141
Diagnostics, 1146
Preoperative diagnostics in the posterior dentition, 1146
General considerations and decision-making for implants in the posterior dentition, 1148
Decision-making between implant-supported reconstruction and tooth-supported fixed dental prostheses, 1148
Provisional reconstructions, 1149
Loading concepts, 1150
Splinted versus single-unit restorations of multiple adjacent posterior implants, 1151
Type of reconstruction(s), 1152
Applied clinical concepts, 1154
Therapeutic concepts at sites with sufficient bone quantity, 1154
Therapeutic concepts at sites with insufficient bone quantity, 1163
Acknowledgment, 1166

45 Implants in the Zone of Esthetic Priority, 1171
Rino Burkhardt, Franz J. Strauss, and Ronald E. Jung

Introduction, 1171
Patient safety first: how to protect patients from avoidable harm?, 1172
Understanding benefits and harms of implant treatments, 1172
The gap between scientific evidence and what happens, 1174
Transparent risk communication and shared decision-making programs, 1177
Preoperative diagnostics, 1178
Clinical measurements, 1178
Image-guided diagnostics, 1179
Visualization of prospective results for diagnostics and patient information, 1179
Preoperative risk assessment, 1180
Evaluation of alternative treatments and checklists, 1180
Surgeon-related risk factors, 1182
Provisional restorations and timing of the treatment sequences, 1183
From tooth extraction to implant placement, 1183
At implant placement with immediate provisionalization, 1185
From implant placement to abutment connection, 1186
From abutment connection to final crown/bridge placement, 1186
New manufacturing techniques (CAD-CAM and 3D printing), 1188
Surgical considerations when dealing with implants in the zone of esthetic priority, 1188
Surgical aspects for undisturbed wound healing, 1188
Incisions and flap design, 1189
Clinical concepts for replacement of a single missing tooth, 1191
Sites with no or minor tissue deficiencies, 1192
Sites with extended tissue deficiencies, 1192
Clinical concepts for replacement of multiple missing teeth, 1196
Sites with minor tissue deficiencies, 1198
Sites with severe tissue deficiencies, 1198
Prosthetic reconstruction in the zone of esthetic priority, 1198
Decision-making process: standardized versus customized abutments, 1198
Decision-making process: all-ceramic versus porcelain-fused-to-metal reconstructions, 1203
Adverse esthetic outcomes, 1204
Origin, causes, and prevalence of adverse esthetic outcomes, 1204
Clinical findings and classification of esthetic adverse outcomes, 1204
Strategies for retreatment of esthetic adverse outcomes and clinical results, 1205
Concluding remarks and perspectives, 1206
Acknowledgments, 1207
46 Technical Complications in Implant Dentistry, 1214
Clark M. Stanford and Lyndon F. Cooper
Introduction, 1214
Implant fractures, 1215
Implant complications, 1216
Abutment and abutment screw complications, 1217
Residual cement as a technical problem, 1219
Prosthesis attrition and fracture, 1220
Prevention of technical complications, 1223
Conclusion, 1224

Part 17: Orthodontics and Periodontics
47 Tooth Movement in the Periodontally Compromised Patient, 1229
Mariano Sanz and Conchita Martin
Introduction: biologic principles of orthodontic tooth movement, 1229
Periodontal and orthodontic diagnosis, 1231
Treatment planning, 1232
Periodontal considerations, 1233
Orthodontic considerations, 1233
Orthodontic treatment, 1237
Specific orthodontic tooth movements, 1238
Extrusion movements, 1238
Molar up-righting, 1241
Orthodontic tooth movements through cortical bone, 1241
Intrusive tooth movements, 1244
Orthodontic tooth movements and periodontal regeneration, 1247
Pathologic tooth migration, 1250
Multidisciplinary treatment of esthetic problems, 1250

Part 18: Supportive Care
48 Supportive Periodontal Therapy, 1261
Christoph A. Ramseier, Niklaus F. Lang, Janet Kinney, Jeanie E. Suvan, Giedre Matuliene, and Giovanni E. Salvi
Introduction, 1261
Definition, 1262
Basic paradigms for the prevention of periodontal disease, 1262
Patients at risk for periodontitis without regular supportive periodontal therapy, 1264
Supportive periodontal therapy for patients with gingivitis, 1266
Supportive periodontal therapy for patients with periodontitis, 1266
Continuous multilevel risk assessment, 1267
Subject periodontal risk assessment, 1267
Conducting the patient’s individual periodontal risk assessment, 1272
Tooth risk assessment, 1272
Site risk assessment, 1272
Objectives for supportive periodontal therapy, 1273
Determination of personalized supportive periodontal therapy intervals, 1273
Supportive periodontal therapy in daily practice, 1275
Examination, re-evaluation, and diagnosis, 1275
Motivation, re-instruction, and instrumentation, 1276
Treatment of re-infected sites, 1278
Polishing, fluorides, and determination of supportive periodontal therapy interval, 1278

Index, 1283
Contributors

Maurício Araújo
Department of Dentistry
State University of Maringá
Maringá
Paraná
Brazil

Gustavo Avila-Ortiz
Department of Periodontics
College of Dentistry
University of Iowa
Iowa City
IA
USA

Hans-Rudolf Baur
Department of Cardiology
Medical School
University of Bern
Bern
Switzerland

James Beck
Division of Comprehensive Oral Health / Periodontology
Adams School of Dentistry
University of North Carolina
Chapel Hill
NC
USA

Tord Berglundh
Department of Periodontology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Michael M. Bornstein
Oral and Maxillofacial Radiology
Applied Oral Sciences & Community Dental Care
Faculty of Dentistry
The University of Hong Kong
Hong Kong SAR
China, and
Department of Oral Health & Medicine
University Center for Dental Medicine Basel UZB
University of Basel
Basel
Switzerland

Dieter D. Bosshardt
Department of Periodontology
School of Dental Medicine
University of Bern
Bern
Switzerland

Rino Burkhardt
Faculty of Dentistry
The University of Hong Kong
Hong Kong SAR
China, and
Clinic of Reconstructive Dentistry
University of Zurich
Zurich
Switzerland

Iain Chapple
Periodontal Research Group
School of Dentistry
University of Birmingham
Birmingham
UK

Lyndon F. Cooper
University of Illinois at Chicago
College of Dentistry
Chicago
IL
USA

Pierpaolo Cortellini
European Research Group on Periodontology (ERGOPerio)
Genoa
Italy
and
Private Practice
Florence
Italy

Mike Curtis
Faculty of Dentistry
Oral and Craniofacial Sciences
King’s College London
London
UK

Dorothea Dagassan-Berndt
Center for Dental Imaging
University Center for Dental Medicine Basel UZB
University of Basel
Basel
Switzerland

Francesco D’Aiuto
Periodontology Unit
UCL Eastman Dental Institute
London
UK
Ryan T. Demmer
Division of Epidemiology and Community Health
School of Public Health
University of Minnesota
Minneapolis
MN
USA

Jan Derks
Department of Periodontology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Massimo de Sanctis
Department of Periodontology
Università Vita e Salute San Raffaele
Milan
Italy

Peter Eickholz
Department of Periodontology
Center of Dentistry and Oral Medicine (Carolinum)
Johann Wolfgang Goethe-University Frankfurt am Main
Frankfurt am Main
Germany

Roberto Farina
Research Centre for the Study of Periodontal and Peri-implant Diseases
University of Ferrara
Ferrara
Italy, and
Operative Unit of Dentistry
Azienda Unità Sanitaria Locale (AUSL)
Ferrara
Italy

Magda Feres
Department of Periodontology
Dental Research Division
Guarulhos University
Guarulhos
São Paulo
Brazil, and
The Forsyth Institute
Cambridge
MA
USA

William V. Giannobile
Harvard School of Dental Medicine
Boston
MA
USA

Filippo Graziani
Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine
University of Pisa
Pisa
Italy

Christoph H.F. Hämerle
Clinic of Reconstructive Dentistry
Center of Dental Medicine
University of Zurich
Zurich
Switzerland

Hatice Hasturk
Forsyth Institute
Cambridge
MA
USA

Lisa Heitz-Mayfield
International Research Collaborative – Oral Health and Equity
School of Anatomy, Physiology and Human Biology
The University of Western Australia
Crawley
WA
Australia

David Herrera
ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group
Complutense University of Madrid
Madrid
Spain

Palle Holmstrup
Department of Periodontology
School of Dentistry
University of Copenhagen
Copenhagen
Denmark

Kuofeng Hung
Oral and Maxillofacial Radiology
Applied Oral Sciences & Community Dental Care
Faculty of Dentistry
The University of Hong Kong
Hong Kong SAR
China

Saso Ivanovski
School of Dentistry
The University of Queensland
Australia

Søren Jepsen
Department of Periodontology, Operative, and Preventive Dentistry
Center of Oral, Dental, Maxillofacial Medicine
University of Bonn
Bonn
Germany

Mats Jontell
Oral Medicine and Pathology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Ronald. E. Jung
Clinic of Reconstructive Dentistry
University of Zurich
Zurich
Switzerland

Darnell Kaigler
Department of Periodontics and Oral Medicine
University of Michigan School of Dentistry
and
Department of Biomedical Engineering
College of Engineering
Ann Arbor
MI
USA
Alpdogan Kantarci
Forsyth Institute
Cambridge
MA
USA

Janet Kinney
Department of Periodontics and Oral Medicine
University of Michigan School of Dentistry
Ann Arbor
MI
USA

Kenneth Kornman
Department of Periodontics and Oral Medicine
University of Michigan School of Dentistry
Ann Arbor
MI
USA

Marja L. Laine
Department of Periodontology
Academic Center for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Evanthia Lalla
Division of Periodontics
Section of Oral, Diagnostic, and Rehabilitation Sciences
Columbia University College of Dental Medicine
New York
NY
USA

Niklaus P. Lang
Department of Periodontology
School of Dental Medicine
University of Bern
Bern
Switzerland

Jan Lindhe
Department of Periodontology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Bruno G. Loos
Department of Periodontology
Academic Center for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Philip D. Marsh
Department of Oral Biology
School of Dentistry
University of Leeds
UK

Conchita Martin
Faculty of Odontology
Complutense University of Madrid
Madrid
Spain

Giedrė Matulienė
Private Practice
Zurich
Switzerland

Luigi Nibali
Department of Periodontology
Centre for Host–Microbiome Interactions
King’s College London
Guy’s Hospital
London
UK

Sture Nyman (deceased)
Department of Periodontology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Panos N. Papapanou
Division of Periodontics
Section of Oral, Diagnostic, and Rehabilitation Sciences
Columbia University College of Dental Medicine
New York
NY
USA

Bjarni E. Pjetursson
Department of Reconstructive Dentistry
University of Iceland
Reykjavik
Iceland

Christoph A. Ramseier
Department of Periodontology
School of Dental Medicine
University of Bern
Bern
Switzerland

Giulio Rasperini
Department of Biomedical, Surgical, and Dental Sciences
Foundation IRCCS Ca’ Granda Polyclinic
University of Milan
Milan
Italy

Giovanni E. Salvi
Department of Periodontology
School of Dental Medicine
University of Bern
Bern
Switzerland

Mariano Sanz
Facility of Odontology
ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group
Complutense University of Madrid
Madrid
Spain, and
Department of Periodontology
Faculty of Dentistry
Institute of Clinical Dentistry
University of Oslo
Oslo
Norway
Contributors

Arne S. Schaefer
Department of Periodontology, Oral Medicine and Oral Surgery
Institute for Dental and Craniofacial Sciences
Charité–Universitätsmedizin
Berlin
Germany

Frank Schwarz
Department of Oral Surgery and Implantology
Centre for Dentistry and Oral Medicine
Frankfurt
Germany

Anton Sculean
Department of Periodontology
School of Dental Medicine
University of Bern
Bern
Switzerland

Jorge Serrano
EETP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group
Complutense University of Madrid
Madrid
Spain

Gregory J. Seymour
School of Dentistry
The University of Queensland
Brisbane
Australia

Dagmar Else Slot
Department of Periodontology
Academic Centre for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Clark M. Stanford
University of Illinois at Chicago
College of Dentistry
Chicago
IL, USA

Franz J. Strauss
Clinic of Reconstructive Dentistry
University of Zurich
Zurich
Switzerland, and
Department of Conservative Dentistry
Faculty of Dentistry
University of Chile
Santiago
Chile

Jeanie E. Suvan
Unit of Periodontology
UCL Eastman Dental Institute
London
UK

Dimitris N. Tatakis
Division of Periodontology
Ohio State University
College of Dentistry
Columbus
OH
USA

Daniel S. Thoma
Clinic of Reconstructive Dentistry
University of Zurich
Zurich
Switzerland

Cristiano Tomasi
Department of Periodontology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Maurizio S. Tonetti
Shanghai Jiao Tong University School of Medicine and
Clinical Research Center of Periodontology and Oral and Maxillo-facial Implants, National Clinical Research Center of Oral Diseases and Medical Clinical Research Center Shanghai 9th People Hospital
China, and
ERGOPerio (European Research Group on Periodontology)
Genova
Italy

Leonardo Trombelli
Research Centre for the Study of Periodontal and Peri-implant Diseases
University of Ferrara
Ferrara
Italy, and
Operative Unit of Dentistry
Azienda Unità Sanitaria Locale (AUSL)
Ferrara
Italy

Ubele van der Velden
Department of Periodontology
Academic Center for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Fridus van der Weijden
Department of Periodontology
Academic Centre for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Fabio Vignoletti
Department of Periodontology
Faculty of Odontology
Complutense University of Madrid
Madrid
Spain

Jan L. Wennström
Department of Periodontology
Institute of Odontology
The Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden
In 1983, Professor Jan Lindhe, University of Gothenburg, Sweden, published the first edition of *Clinical Periodontology*. This was only 2 years after the publication of a textbook on clinical periodontology in Scandinavian languages. It was a pioneer enterprise and began a new era in the study of periodontology. Up to this point, the profession was predominantly oriented towards a treatment philosophy that was based on *deductive thinking*, and very little scientific evidence had been presented.

In this light, the publication of a textbook that was based on *inductive thinking* and hypothesis testing was a true milestone and represented a novelty in teaching undergraduate and graduate students. As the field of clinical periodontology evolved, and more evidence arose from both clinical and preclinical studies, the textbook had to be revised on a regular basis. By and large, every 5 to 8 years a new edition of *Clinical Periodontology* was put together. With every edition, efforts were made to expand the circle of authors in order to obtain more information on evidence-based concepts. The textbook thus became the most internationally recognized source of information in the periodontal community.

About 20–30 years ago, implant dentistry had become an integral part of clinical periodontology. Hence, the fifth edition of *Clinical Periodontology* was substantially expanded to incorporate biological and clinical aspects of implant dentistry. As teeth and implants are to function together as separate or connected units in the same dentition, a profound knowledge of the biology of the tissues surrounding the tooth and the dental implant is of utmost importance. Owing to the large volume of new information, the fifth edition of the now titled *Clinical Periodontology and Implant Dentistry* was split into two volumes, one on *basic concepts* and another on *clinical concepts*. This division into two volumes was maintained for the sixth edition and is also maintained for this, the seventh edition.

In the last 35 years, during which the textbook evolved into the most popular source of reference, periodontology and implant dentistry have become clinical disciplines based on sound scientific evidence. As a new classification of periodontal and peri-implant diseases and conditions emerged after a world workshop staged by the American Academy of Periodontology and the European Federation of Periodontology, it was time, again, to update the textbook.

In this edition, over 90% of the content has been thoroughly revised and condensed for better understanding. Some less essential chapters have been eliminated and others merged to make the text more cohesive. A new and younger generation of authors of international reputation have been invited to contribute. Moreover, the team of Editors has been enlarged to four.

It is our hope that *Lindhe’s Clinical Periodontology and Implant Dentistry* remains the key book of reference to guide treatment planning according to sound biological and evidence-based principles rather than opinions based on trial and error philosophies.

Tord Berglundh
William V. Giannobile
Niklaus P. Lang
Mariano Sanz

March 2021
Introduction

This chapter provides a brief description of the characteristics of the normal periodontium. It is assumed that the reader has prior knowledge of oral embryology and histology.

The periodontium (peri = around, odontos = tooth) comprises the following tissues: (1) gingiva, (2) periodontal ligament, (3) root cementum, and (4) alveolar bone proper (Fig. 1-1). The latter lines the alveolus of the tooth and is continuous with the alveolar bone; on a radiograph it can be called lamina dura. The alveolar process that extends from the basal bone of the maxilla and mandible consists of the alveolar bone and the alveolar bone proper.

The main function of the periodontium is to attach the tooth to the jaw bone and to maintain the integrity of the surface of the masticatory mucosa of the oral cavity. The periodontal ligament, root cementum, and alveolar bone proper, may together be called “the attachment apparatus” or “the supporting tissues of the teeth”, constituting a developmental, biologic, and functional unit which undergoes certain changes with age and is, in addition, subjected to morphologic changes related to functional alterations and alterations in the oral environment.

The development of the periodontal tissues occurs during the development and formation of teeth. This process starts early in the embryonic phase when cells from the neural crest (from the neural tube of the embryo) migrate into the first branchial arch. In this position, the neural crest cells form a band of ectomesenchyme beneath the epithelium of the stomatodeum (the primitive oral cavity). After the uncommitted neural crest cells have reached their location in the jaw space, the epithelium of the stomatodeum releases factors which initiate epithelial–ectomesenchymal interactions. Once these interactions have occurred, the ectomesenchyme takes the dominant role in the further development. Following the formation of the dental lamina, a series of processes are initiated (bud stage, cap stage, bell stage, and root development) which result in the formation of a tooth and its surrounding periodontal tissues, including the alveolar bone proper. During the cap stage, condensation of ectomesenchymal cells appears in relation to the dental epithelium (the dental organ), forming the dental papilla that gives rise to
the dentin and the pulp, and the *dental follicle* that gives rise to the periodontal supporting tissues (Fig. 1-2). The decisive role played by the ectomesenchyme in this process is further established by the fact that the tissue of the dental papilla apparently also determines the shape and form of the tooth.

If a tooth germ in the bell stage of development is dissected and transplanted to an ectopic site (e.g. the connective tissue of the anterior chamber of the eye), the tooth formation process continues. The crown and the root are formed, and the supporting structures (i.e. cementum, periodontal ligament, and a thin lamina of alveolar bone proper) also develop. Such experiments document that all information necessary for the formation of a tooth and its attachment apparatus resides within the tissues of the dental organ and the surrounding ectomesenchyme. The dental organ is the formative organ of enamel, the dental papilla is the formative organ of the dentin–pulp complex, and the dental follicle is the formative organ of the attachment apparatus (cementum, periodontal ligament, and alveolar bone proper).

The development of the root and the periodontal supporting tissues follows that of the crown. Epithelial cells of the external and internal dental epithelium (the dental organ) proliferate in an apical direction, forming a double layer of cells called *Hertwig’s epithelial root sheath*. The odontoblasts forming the dentin of the root differentiate from ectomesenchymal cells in the dental papilla under the inductive influence of the inner epithelial cells (Fig. 1-3). The dentin continues to form in an apical direction, producing the framework of the root. During formation of the root, the periodontal supporting tissues including the acellular extrinsic fiber cementum (AEFC) develop. Some of the events in cementogenesis are still unclear, but the following concept is now generally accepted.

At the start of root dentin formation, the inner cells of Hertwig’s epithelial root sheath may synthesize and secrete enamel-related proteins, some of which belong to the amelogenin family. At the end of this process, the epithelial root sheath becomes fenestrated and ectomesenchymal cells from the dental follicle penetrate through these fenestrations and contact the root surface. The ectomesenchymal cells in contact with the root surface differentiate into cementoblasts and start to form cementoid. This cementoid represents the organic matrix of the cementum and consists of a ground substance and collagen fibers, which intermingle with collagen fibers in the not yet fully mineralized outer layer of the dentin. It is assumed that the cementum becomes firmly attached to the dentin through these fiber interactions followed by mineralization of this interface (Fig. 1-4). The formation of the CIFC, which often covers the apical third of the dental roots, differs from that of AEFC.
as some of the cementoblasts become embedded in the cementum.

The remaining parts of the periodontium are formed by ectomesenchymal cells from the dental follicle lateral to the cementum. Some of them differentiate into periodontal ligament fibroblasts and form the fibers of the periodontal ligament, while others become osteoblasts and form the alveolar bone proper in which the periodontal fibers are anchored. This bony structure has also been termed “bundle bone”. In other words, the bundle bone is also an ectomesenchymal product. It is likely, but still not conclusively documented, that ectomesenchymal cells remain in the mature periodontium and take part in the turnover of this tissue.

Gingiva

Anatomy

The oral mucosa is continuous with the skin of the lips and the mucosa of the soft palate and pharynx. The oral mucosa consists of: (1) the *masticatory mucosa*, which includes the gingiva and the covering of the hard palate; (2) the *specialized mucosa*, which covers the dorsum of the tongue; and (3) the remaining part, called the *lining mucosa*.

The gingiva is that part of the masticatory mucosa which covers the alveolar process and surrounds the cervical portion of the teeth (Fig. 1-5). It consists of an epithelial layer and an underlying connective tissue layer called the *lamina propria*. The gingiva obtains its final shape and texture in conjunction with eruption of the teeth.

In the coronal direction, the coral pink gingiva terminates in the *free gingival margin*, which has a scalloped outline. In the apical direction, the gingiva is continuous with the loose, darker red *alveolar mucosa* (lining mucosa) from which the gingiva is separated by a usually easily recognizable border called either the mucogingival junction, sometimes termed the mucogingival line (Fig. 1-5, arrows). As the hard palate and maxillary alveolar process are covered by a keratinizing mucosa of similar clinical appearance, no mucogingival junction is macroscopically recognizable (Fig. 1-6).

Two parts of the gingiva may be identified (Fig. 1-7): (1) the free gingiva and (2) the attached gingiva. The free gingiva is coral pink, has a dull surface and a firm consistency. It comprises the gingival tissue at the vestibular and lingual/palatal aspects of the teeth. On the vestibular and lingual sides of the teeth, the free gingiva extends from the gingival margin in an apical direction to a structure named *free gingival groove*, which is only observable in approximately one-third of the cases. The attached gingiva is demarcated by the mucogingival junction in the apical direction.

The free gingival margin is often rounded in such a way that a small invagination or sulcus is formed between the tooth and the gingiva. When a periodontal probe is inserted into this invagination and, further apically, towards the cemento-enamel junction (CEJ), the gingival tissue is separated from the tooth and a “gingival pocket” or “gingival crevice” is artificially opened (Fig. 1-8). Thus, in clinically healthy gingiva, there is in fact no “gingival pocket” or “gingival crevice” present, but the gingiva is in close contact with the enamel surface. After complete tooth eruption, the free gingival margin is located on the enamel surface approximately 1.5–2 mm coronal to the CEJ.

The shape of the *interdental gingiva* (the *interdental papilla*) is determined by the contact relationships between the teeth, the width of the approximal tooth
When two daughter cells have been formed by cell division, an adjacent “older” basal cell is pushed into the spinous cell layer and starts, as a keratinocyte, to traverse the epithelium (Fig. 1-22). It takes approximately 1 month for a keratinocyte to reach the outer epithelial surface, where it is shed from the stratum corneum. Within a given time, the number of cells which divide in the basal layer equals the number of cells which are shed from the surface. Thus, under homeostatic conditions, there is equilibrium between cell renewal and cell loss so that the epithelium maintains a constant thickness. As the basal cell migrates through the epithelium, it becomes flattened with its long axis parallel to the epithelial surface.

The basal cells are found immediately adjacent to the soft connective tissue and are separated from it by the basement membrane, probably produced by the basal cells themselves. Under the light microscope, this membrane appears as a structureless zone approximately 1-2 μm wide and reacts positively to a periodic acid-Schiff (PAS) stain (Fig. 1-23). This positive reaction demonstrates that the basement membrane contains carbohydrates (glycoproteins). The epithelial cells are surrounded by an extracellular substance which also contains protein-polysaccharide complexes.

At the ultrastructural level, the basement membrane has a complex composition (Fig. 1-24). Immediately beneath the basal cells, an approximately 400 Å wide electron-lucent zone can be seen, which is called the lamina lucida. Beneath the lamina lucida, an electron-dense zone of approximately the same thickness can be observed. This zone is called lamina densa. From the lamina densa, so-called anchoring fibrils project in a fan-shaped fashion into the soft connective tissue. The anchoring fibrils are approximately 1 μm.
in length and terminate freely in the soft connective tissue. The basement membrane, which under the light microscope appears as an entity, thus, in the electron micrograph, appears to comprise one lamina lucida and one lamina densa with adjacent anchoring fibrils that interdigitate with the soft connective tissue fibers. The cell membrane of the epithelial cells facing the lamina lucida harbors a number of electron-dense, thicker zones appearing at various intervals along the cell membrane. These structures are called hemidesmosomes. The cytoplasmic tonofilaments (cytokeratin filaments) in the cell converge towards the hemidesmosomes. The hemidesmosomes are involved in the attachment of the epithelium to the underlying basement membrane.

The stratum spinosum consists of 10–20 layers of relatively large, polyhedral cells, equipped with short cytoplasmic processes resembling spines (Fig. 1-25). These cytoplasmic processes occur at regular intervals and give the cells a prickly appearance. Together with intercellular protein–carbohydrate complexes, cohesion between the cells is provided by numerous “desmosomes” (pairs of hemidesmosomes), which are located between the cytoplasmic processes of adjacent cells. In the transmission electron microscope, the dark-stained structures between the individual epithelial cells represent the desmosomes (arrows) (Fig. 1-26). A desmosome may be considered to be two hemidesmosomes facing one another. The
Anatomy of Periodontal Tissues

The presence of a large number of desmosomes indicates that the cohesion between the epithelial cells is solid.

A schematic drawing of a desmosome is shown in Fig. 1-27. A desmosome can be considered to consist of two adjoining hemidesmosomes separated by a zone containing electron-dense granulated material. Thus, a desmosome comprises the following structural components: (1) the outer leaflet of the cell membranes of two adjoining cells; (2) the thick inner leaflets of the cell membranes; and (3) the attachment plaques, which represent granular and fibrillar material in the cytoplasm.

As mentioned previously, the oral epithelium also contains melanocytes, which are responsible for the production of the pigment melanin (Fig. 1-28).

Melanocytes are present in individuals with marked pigmentation of the oral mucosa as well as in individuals in whom no clinical signs of pigmentation can be seen. In this transmission electron micrograph, a melanocyte is present in the lower portion of the stratum spinosum. In contrast to the keratinocytes, this cell contains melanin granules and has no tonofilaments or hemidesmosomes. Note the large number of tonofilaments in the cytoplasm of the adjacent keratinocytes. The inclusion of melanin granules may result in a distinct pigmentation of the oral gingival epithelium and is normally encountered in people with a dark complexion (Fig. 1-29).

As indicated previously, the keratinocytes undergo continuous differentiation and specialization when traversing the epithelium from the basal layer to the...
epithelial surface (Fig. 1-30). From the basal layer (stratum basale) to the granular layer (stratum granulosum) both the number of tonofilaments in the cytoplasm and the number of desmosomes increase. In contrast, the number of organelles, such as mitochondria, lamellae of rough endoplasmic reticulum, and Golgi complexes decrease in the keratinocytes on their way from the basal layer towards the surface. In the stratum granulosum, electron-dense keratohyalin bodies and clusters of glycogen-containing granules start to appear. Such granules are believed to be related to the synthesis of keratin.

Dentogingival epithelium

The tissue components of the dentogingival region achieve their final structural characteristics in conjunction with the eruption of the teeth. This is illustrated in Fig. 1-33a–d.

When the enamel of the tooth is fully developed, the enamel-producing cells (ameloblasts) become reduced in height, produce a basal lamina, and form, together with cells from the outer enamel epithelium, the so-called reduced enamel epithelium. The basal lamina lies in direct contact with the enamel. The contact between this lamina and the epithelial cells is maintained by hemidesmosomes. The reduced enamel epithelium surrounds the crown of the tooth.